1887

Abstract

RpeA is a two-component sensor protein that negatively controls biosynthesis of phenazines, which are required for biological control activity by 30-84. In this study, we identified the cognate response regulator RpeB and investigated how RpeA and RpeB interact with the PhzR/PhzI quorum sensing system and other known regulatory genes to control phenazine production. Quantitative real-time PCR revealed that, in contrast with an mutant, expression of the phenazine biosynthetic genes as well as the and genes were significantly reduced in an mutant, suggesting positive control of phenazines by RpeB. Complementation assays showed that overexpression of rescued phenazine production in an mutant, whereas multiple copies of genes were unable to restore phenazine production in a or mutant. These results indicate that RpeA and RpeB differentially regulate phenazine production and act upstream of Pip and PhzR in the phenazine regulatory network. The differential regulatory functions for RpeA and RpeB also affected the capacity of 30-84 for fungal inhibition. Based on these results, a model is proposed to illustrate the relationship of RpeA/RpeB to other regulatory genes controlling phenazine biosynthesis in 30-84, a regulatory hierarchy that may be conserved in other pseudomonads and may play a role in stress response.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.059352-0
2012-07-01
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/7/1745.html?itemId=/content/journal/micro/10.1099/mic.0.059352-0&mimeType=html&fmt=ahah

References

  1. Chancey S. T., Wood D. W., Pierson L. S. III. ( 1999;). Two-component transcriptional regulation of N-acyl-homoserine lactone production in Pseudomonas aureofaciens . Appl Environ Microbiol65:2294–2299[PubMed]
    [Google Scholar]
  2. Chancey S. T., Wood D. W., Pierson E. A., Pierson L. S. III. ( 2002;). Survival of GacS/GacA mutants of the biological control bacterium Pseudomonas aureofaciens 30-84 in the wheat rhizosphere. Appl Environ Microbiol68:3308–3314[CrossRef]
    [Google Scholar]
  3. Chin-A-Woeng T. F. C., Bloemberg G. V., van der Bij A. J., van der Drift K. M. G. M., Schripsema J., Kroon B., Scheffer R. J., Keel C., Bakker P. A. H. M. et al. ( 1998;). Biocontrol by phenazine-1-carboxamide-producing Pseudomonas chlororaphis PCL1391 of tomato root rot caused by Fusarium oxysporum f sp radicis-lycopersici . Mol Plant Microbe Interact11:1069–1077 [CrossRef]
    [Google Scholar]
  4. Dietrich L. E., Price-Whelan A., Petersen A., Whiteley M., Newman D. K.. ( 2006;). The phenazine pyocyanin is a terminal signaling factor in the quorum sensing network of Pseudomonas aeruginosa . Mol Microbiol61:1308–1321 [CrossRef]
    [Google Scholar]
  5. Girard G., Rigali S.. ( 2011;). Role of the phenazine-inducing protein Pip in stress resistance of Pseudomonas chlororaphis . Microbiology157:398–407 [CrossRef][PubMed]
    [Google Scholar]
  6. Girard G., Barends S., Rigali S., van Rij E. T., Lugtenberg B. J., Bloemberg G. V.. ( 2006a;). Pip, a novel activator of phenazine biosynthesis in Pseudomonas chlororaphis PCL1391. J Bacteriol188:8283–8293 [CrossRef][PubMed]
    [Google Scholar]
  7. Girard G., van Rij E. T., Lugtenberg B. J. J., Bloemberg G. V.. ( 2006b;). Regulatory roles of psrA and rpoS in phenazine-1-carboxamide synthesis by Pseudomonas chlororaphis PCL1391. Microbiology152:43–58 [CrossRef][PubMed]
    [Google Scholar]
  8. Gross H., Loper J. E.. ( 2009;). Genomics of secondary metabolite production by Pseudomonas spp. Nat Prod Rep26:1408–1446 [CrossRef][PubMed]
    [Google Scholar]
  9. Haas D., Défago G.. ( 2005;). Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol3:307–319 [CrossRef][PubMed]
    [Google Scholar]
  10. Heeb S., Blumer C., Haas D.. ( 2002;). Regulatory RNA as mediator in GacA/RsmA-dependent global control of exoproduct formation in Pseudomonas fluorescens CHA0. J Bacteriol184:1046–1056 [CrossRef][PubMed]
    [Google Scholar]
  11. Huang L., Chen M. M., Wang W., Hu H. B., Peng H. S., Xu Y. Q., Zhang X. H.. ( 2011;). Enhanced production of 2-hydroxyphenazine in Pseudomonas chlororaphis GP72. Appl Microbiol Biotechnol89:169–177 [CrossRef][PubMed]
    [Google Scholar]
  12. Krell T., Lacal J., Busch A., Silva-Jiménez H., Guazzaroni M. E., Ramos J. L.. ( 2010;). Bacterial sensor kinases: diversity in the recognition of environmental signals. Annu Rev Microbiol64:539–559 [CrossRef][PubMed]
    [Google Scholar]
  13. Larsen R. A., Wilson M. M., Guss A. M., Metcalf W. W.. ( 2002;). Genetic analysis of pigment biosynthesis in Xanthobacter autotrophicus Py2 using a new, highly efficient transposon mutagenesis system that is functional in a wide variety of bacteria. Arch Microbiol178:193–201 [CrossRef][PubMed]
    [Google Scholar]
  14. Lesic B., Rahme L. G.. ( 2008;). Use of the lambda Red recombinase system to rapidly generate mutants in Pseudomonas aeruginosa . BMC Mol Biol9:20 [CrossRef][PubMed]
    [Google Scholar]
  15. Maddula V. S., Zhang Z., Pierson E. A., Pierson L. S. III. ( 2006;). Quorum sensing and phenazines are involved in biofilm formation by Pseudomonas chlororaphis (aureofaciens) strain 30-84. Microb Ecol52:289–301[CrossRef]
    [Google Scholar]
  16. Mavrodi D. V., Blankenfeldt W., Thomashow L. S.. ( 2006;). Phenazine compounds in fluorescent Pseudomonas spp. biosynthesis and regulation. Annu Rev Phytopathol44:417–445 [CrossRef][PubMed]
    [Google Scholar]
  17. Mazzola M., Cook R. J., Thomashow L. S., Weller D. M., Pierson L. S. III. ( 1992;). Contribution of phenazine antibiotic biosynthesis to the ecological competence of fluorescent pseudomonads in soil habitats. Appl Environ Microbiol58:2616–2624[PubMed]
    [Google Scholar]
  18. Mentel M., Ahuja E. G., Mavrodi D. V., Breinbauer R., Thomashow L. S., Blankenfeldt W.. ( 2009;). Of two make one: the biosynthesis of phenazines. ChemBioChem10:2295–2304 [CrossRef][PubMed]
    [Google Scholar]
  19. Miller J. H.. ( 1972;). Assay of β-galactosidase. Experiments in Molecular Genetics352–355 Miller J. H.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  20. Miller W. G., Leveau J. H., Lindow S. E.. ( 2000;). Improved gfp and inaZ broad-host-range promoter-probe vectors. Mol Plant Microbe Interact13:1243–1250 [CrossRef][PubMed]
    [Google Scholar]
  21. Nicastro G. G., Boechat A. L., Abe C. M., Kaihami G. H., Baldini R. L.. ( 2009;). Pseudomonas aeruginosa PA14 cupD transcription is activated by the RcsB response regulator, but repressed by its putative cognate sensor RcsC. FEMS Microbiol Lett301:115–123[CrossRef]
    [Google Scholar]
  22. Pamp S. J., Tolker-Nielsen T.. ( 2006;). Multiple roles of biosurfactants in structural biofilm development by Pseudomonas aeruginosa. . J Bacteriol189:2531–2539[CrossRef]
    [Google Scholar]
  23. Parkinson J. S., Kofoid E. C.. ( 1992;). Communication modules in bacterial signaling proteins. Annu Rev Genet26:71–112[CrossRef]
    [Google Scholar]
  24. Pierson L. S., Pierson E. A.. ( 2010;). Metabolism and function of phenazines in bacteria: impacts on the behavior of bacteria in the environment and biotechnological processes. Appl Microbiol Biotechnol86:1659–1670[CrossRef]
    [Google Scholar]
  25. Pierson L. S. III, Thomashow L. S.. ( 1992;). Cloning and heterologous expression of the phenazine biosynthetic locus from Pseudomonas aureofaciens 30-84. Mol Plant Microbe Interact5:330–339 [CrossRef][PubMed]
    [Google Scholar]
  26. Pierson L. S. III, Keppenne V. D., Wood D. W.. ( 1994;). Phenazine antibiotic biosynthesis in Pseudomonas aureofaciens 30-84 is regulated by PhzR in response to cell density. J Bacteriol176:3966–3974[PubMed]
    [Google Scholar]
  27. Pierson L. S. III, Gaffney T., Lam S., Gong F.. ( 1995;). Molecular analysis of genes encoding phenazine biosynthesis in the biological control bacterium Pseudomonas aureofaciens 30-84. FEMS Microbiol Lett134:299–307[PubMed]
    [Google Scholar]
  28. Ramos J. L., Martínez-Bueno M., Molina-Henares A. J., Terán W., Watanabe K., Zhang X., Gallegos M. T., Brennan R., Tobes R.. ( 2005;). The TetR family of transcriptional repressors. Microbiol Mol Biol Rev69:326–356 [CrossRef][PubMed]
    [Google Scholar]
  29. Rodrigue A., Quentin Y., Lazdunski A., Méjean V., Foglino M.. ( 2000;). Cell signalling by oligosaccharides. Two-component systems in Pseudomonas aeruginosa: why so many?. Trends Microbiol8:498–504 [CrossRef][PubMed]
    [Google Scholar]
  30. Sambrook J., Russell D.. ( 2001;). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  31. Sarniguet A., Kraus J., Henkels M. D., Muehlchen A. M., Loper J. E.. ( 1995;). The sigma factor σs affects antibiotic production and biological control activity of Pseudomonas fluorescens Pf-5. Proc Natl Acad Sci U S A92:12255–12259 [CrossRef][PubMed]
    [Google Scholar]
  32. Stock J. B., Stock A. M., Mottonen J. M.. ( 1990;). Signal transduction in bacteria. Nature344:395–400[CrossRef]
    [Google Scholar]
  33. Tambong J. T., Hofte M.. ( 2001;). Phenazines are involved in biocontrol of Pythium myriotylum on cocoyam by Pseudomonas aeruginosa PNA1. Eur J Plant Pathol107:511–521 [CrossRef]
    [Google Scholar]
  34. Tomich C. S., Kaytes P. S., Olsen M. K., Patel H.. ( 1988;). Use of lacZ expression to monitor transcription. Plasmid20:167–170 [CrossRef][PubMed]
    [Google Scholar]
  35. Wang D., Korban S. S., Zhao Y. F.. ( 2009;). The Rcs phosphorelay system is essential for pathogenicity in Erwinia amylovora . Mol Plant Pathol10:277–290 [CrossRef][PubMed]
    [Google Scholar]
  36. Wang D., Korban S. S., Zhao Y. F.. ( 2010;). Molecular signature of differential virulence in natural isolates of Erwinia amylovora . Phytopathology100:192–198 [CrossRef][PubMed]
    [Google Scholar]
  37. Wang D., Calla B., Vimolmangkang S., Wu X., Korban S. S., Huber S. C., Clough S. J., Zhao Y.. ( 2011a;). The orphan gene ybjN conveys pleiotropic effects on multicellular behavior and survival of Escherichia coli . PLoS ONE6:e25293 [CrossRef][PubMed]
    [Google Scholar]
  38. Wang D., Korban S. S., Pusey P. L., Zhao Y. F.. ( 2011b;). Characterization of the RcsC sensor kinase from Erwinia amylovora and other Enterobacteria. Phytopathology101:710–717 [CrossRef][PubMed]
    [Google Scholar]
  39. Wang D., Qi M., Calla B., Korban S. S., Clough S. J., Cock P. J., Sundin G. W., Toth I., Zhao Y.. ( 2012;). Genome-wide identification of genes regulated by the Rcs phosphorelay system in Erwinia amylovora . Mol Plant Microbe Interact25:6–17 [CrossRef][PubMed]
    [Google Scholar]
  40. Whistler C. A., Pierson L. S. III. ( 2003;). Repression of phenazine antibiotic production in Pseudomonas aureofaciens strain 30–84 by RpeA. J Bacteriol185:3718–3725 [CrossRef]
    [Google Scholar]
  41. Wood D. W., Pierson L. S. III. ( 1996;). The phzI gene of Pseudomonas aureofaciens 30-84 is responsible for the production of a diffusible signal required for phenazine antibiotic production. Gene168:49–53 [CrossRef][PubMed]
    [Google Scholar]
  42. Wood D. W., Gong F., Daykin M. M., Williams P., Pierson L. S. III. ( 1997;). N-acyl-homoserine lactone-mediated regulation of phenazine gene expression by Pseudomonas aureofaciens 30-84 in the wheat rhizosphere. J Bacteriol179:7663–7670[PubMed]
    [Google Scholar]
  43. Zhang Z., Pierson L. S. III. ( 2001;). A second quorum-sensing system regulates cell surface properties but not phenazine antibiotic production in Pseudomonas aureofaciens . Appl Environ Microbiol67:4305–4315 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.059352-0
Loading
/content/journal/micro/10.1099/mic.0.059352-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error