1887

Abstract

RpeA is a two-component sensor protein that negatively controls biosynthesis of phenazines, which are required for biological control activity by 30-84. In this study, we identified the cognate response regulator RpeB and investigated how RpeA and RpeB interact with the PhzR/PhzI quorum sensing system and other known regulatory genes to control phenazine production. Quantitative real-time PCR revealed that, in contrast with an mutant, expression of the phenazine biosynthetic genes as well as the and genes were significantly reduced in an mutant, suggesting positive control of phenazines by RpeB. Complementation assays showed that overexpression of rescued phenazine production in an mutant, whereas multiple copies of genes were unable to restore phenazine production in a or mutant. These results indicate that RpeA and RpeB differentially regulate phenazine production and act upstream of Pip and PhzR in the phenazine regulatory network. The differential regulatory functions for RpeA and RpeB also affected the capacity of 30-84 for fungal inhibition. Based on these results, a model is proposed to illustrate the relationship of RpeA/RpeB to other regulatory genes controlling phenazine biosynthesis in 30-84, a regulatory hierarchy that may be conserved in other pseudomonads and may play a role in stress response.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.059352-0
2012-07-01
2021-10-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/7/1745.html?itemId=/content/journal/micro/10.1099/mic.0.059352-0&mimeType=html&fmt=ahah

References

  1. Chancey S. T., Wood D. W., Pierson L. S. III ( 1999). Two-component transcriptional regulation of N-acyl-homoserine lactone production in Pseudomonas aureofaciens . Appl Environ Microbiol 65:2294–2299[PubMed]
    [Google Scholar]
  2. Chancey S. T., Wood D. W., Pierson E. A., Pierson L. S. III ( 2002). Survival of GacS/GacA mutants of the biological control bacterium Pseudomonas aureofaciens 30-84 in the wheat rhizosphere. Appl Environ Microbiol 68:3308–3314 [CrossRef]
    [Google Scholar]
  3. Chin-A-Woeng T. F. C., Bloemberg G. V., van der Bij A. J., van der Drift K. M. G. M., Schripsema J., Kroon B., Scheffer R. J., Keel C., Bakker P. A. H. M. et al. ( 1998). Biocontrol by phenazine-1-carboxamide-producing Pseudomonas chlororaphis PCL1391 of tomato root rot caused by Fusarium oxysporum f sp radicis-lycopersici . Mol Plant Microbe Interact 11:1069–1077 [View Article]
    [Google Scholar]
  4. Dietrich L. E., Price-Whelan A., Petersen A., Whiteley M., Newman D. K. ( 2006). The phenazine pyocyanin is a terminal signaling factor in the quorum sensing network of Pseudomonas aeruginosa . Mol Microbiol 61:1308–1321 [View Article]
    [Google Scholar]
  5. Girard G., Rigali S. ( 2011). Role of the phenazine-inducing protein Pip in stress resistance of Pseudomonas chlororaphis . Microbiology 157:398–407 [View Article][PubMed]
    [Google Scholar]
  6. Girard G., Barends S., Rigali S., van Rij E. T., Lugtenberg B. J., Bloemberg G. V. ( 2006a). Pip, a novel activator of phenazine biosynthesis in Pseudomonas chlororaphis PCL1391. J Bacteriol 188:8283–8293 [View Article][PubMed]
    [Google Scholar]
  7. Girard G., van Rij E. T., Lugtenberg B. J. J., Bloemberg G. V. ( 2006b). Regulatory roles of psrA and rpoS in phenazine-1-carboxamide synthesis by Pseudomonas chlororaphis PCL1391. Microbiology 152:43–58 [View Article][PubMed]
    [Google Scholar]
  8. Gross H., Loper J. E. ( 2009). Genomics of secondary metabolite production by Pseudomonas spp. Nat Prod Rep 26:1408–1446 [View Article][PubMed]
    [Google Scholar]
  9. Haas D., Défago G. ( 2005). Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319 [View Article][PubMed]
    [Google Scholar]
  10. Heeb S., Blumer C., Haas D. ( 2002). Regulatory RNA as mediator in GacA/RsmA-dependent global control of exoproduct formation in Pseudomonas fluorescens CHA0. J Bacteriol 184:1046–1056 [View Article][PubMed]
    [Google Scholar]
  11. Huang L., Chen M. M., Wang W., Hu H. B., Peng H. S., Xu Y. Q., Zhang X. H. ( 2011). Enhanced production of 2-hydroxyphenazine in Pseudomonas chlororaphis GP72. Appl Microbiol Biotechnol 89:169–177 [View Article][PubMed]
    [Google Scholar]
  12. Krell T., Lacal J., Busch A., Silva-Jiménez H., Guazzaroni M. E., Ramos J. L. ( 2010). Bacterial sensor kinases: diversity in the recognition of environmental signals. Annu Rev Microbiol 64:539–559 [View Article][PubMed]
    [Google Scholar]
  13. Larsen R. A., Wilson M. M., Guss A. M., Metcalf W. W. ( 2002). Genetic analysis of pigment biosynthesis in Xanthobacter autotrophicus Py2 using a new, highly efficient transposon mutagenesis system that is functional in a wide variety of bacteria. Arch Microbiol 178:193–201 [View Article][PubMed]
    [Google Scholar]
  14. Lesic B., Rahme L. G. ( 2008). Use of the lambda Red recombinase system to rapidly generate mutants in Pseudomonas aeruginosa . BMC Mol Biol 9:20 [View Article][PubMed]
    [Google Scholar]
  15. Maddula V. S., Zhang Z., Pierson E. A., Pierson L. S. III ( 2006). Quorum sensing and phenazines are involved in biofilm formation by Pseudomonas chlororaphis (aureofaciens) strain 30-84. Microb Ecol 52:289–301 [CrossRef]
    [Google Scholar]
  16. Mavrodi D. V., Blankenfeldt W., Thomashow L. S. ( 2006). Phenazine compounds in fluorescent Pseudomonas spp. biosynthesis and regulation. Annu Rev Phytopathol 44:417–445 [View Article][PubMed]
    [Google Scholar]
  17. Mazzola M., Cook R. J., Thomashow L. S., Weller D. M., Pierson L. S. III ( 1992). Contribution of phenazine antibiotic biosynthesis to the ecological competence of fluorescent pseudomonads in soil habitats. Appl Environ Microbiol 58:2616–2624[PubMed]
    [Google Scholar]
  18. Mentel M., Ahuja E. G., Mavrodi D. V., Breinbauer R., Thomashow L. S., Blankenfeldt W. ( 2009). Of two make one: the biosynthesis of phenazines. ChemBioChem 10:2295–2304 [View Article][PubMed]
    [Google Scholar]
  19. Miller J. H. ( 1972). Assay of β-galactosidase. Experiments in Molecular Genetics352–355 Miller J. H. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  20. Miller W. G., Leveau J. H., Lindow S. E. ( 2000). Improved gfp and inaZ broad-host-range promoter-probe vectors. Mol Plant Microbe Interact 13:1243–1250 [View Article][PubMed]
    [Google Scholar]
  21. Nicastro G. G., Boechat A. L., Abe C. M., Kaihami G. H., Baldini R. L. ( 2009). Pseudomonas aeruginosa PA14 cupD transcription is activated by the RcsB response regulator, but repressed by its putative cognate sensor RcsC. FEMS Microbiol Lett 301:115–123 [CrossRef]
    [Google Scholar]
  22. Pamp S. J., Tolker-Nielsen T. ( 2006). Multiple roles of biosurfactants in structural biofilm development by Pseudomonas aeruginosa. . J Bacteriol 189:2531–2539 [CrossRef]
    [Google Scholar]
  23. Parkinson J. S., Kofoid E. C. ( 1992). Communication modules in bacterial signaling proteins. Annu Rev Genet 26:71–112 [CrossRef]
    [Google Scholar]
  24. Pierson L. S., Pierson E. A. ( 2010). Metabolism and function of phenazines in bacteria: impacts on the behavior of bacteria in the environment and biotechnological processes. Appl Microbiol Biotechnol 86:1659–1670 [CrossRef]
    [Google Scholar]
  25. Pierson L. S. III, Thomashow L. S. ( 1992). Cloning and heterologous expression of the phenazine biosynthetic locus from Pseudomonas aureofaciens 30-84. Mol Plant Microbe Interact 5:330–339 [View Article][PubMed]
    [Google Scholar]
  26. Pierson L. S. III, Keppenne V. D., Wood D. W. ( 1994). Phenazine antibiotic biosynthesis in Pseudomonas aureofaciens 30-84 is regulated by PhzR in response to cell density. J Bacteriol 176:3966–3974[PubMed]
    [Google Scholar]
  27. Pierson L. S. III, Gaffney T., Lam S., Gong F. ( 1995). Molecular analysis of genes encoding phenazine biosynthesis in the biological control bacterium Pseudomonas aureofaciens 30-84. FEMS Microbiol Lett 134:299–307[PubMed]
    [Google Scholar]
  28. Ramos J. L., Martínez-Bueno M., Molina-Henares A. J., Terán W., Watanabe K., Zhang X., Gallegos M. T., Brennan R., Tobes R. ( 2005). The TetR family of transcriptional repressors. Microbiol Mol Biol Rev 69:326–356 [View Article][PubMed]
    [Google Scholar]
  29. Rodrigue A., Quentin Y., Lazdunski A., Méjean V., Foglino M. ( 2000). Cell signalling by oligosaccharides. Two-component systems in Pseudomonas aeruginosa: why so many?. Trends Microbiol 8:498–504 [View Article][PubMed]
    [Google Scholar]
  30. Sambrook J., Russell D. ( 2001). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  31. Sarniguet A., Kraus J., Henkels M. D., Muehlchen A. M., Loper J. E. ( 1995). The sigma factor σs affects antibiotic production and biological control activity of Pseudomonas fluorescens Pf-5. Proc Natl Acad Sci U S A 92:12255–12259 [View Article][PubMed]
    [Google Scholar]
  32. Stock J. B., Stock A. M., Mottonen J. M. ( 1990). Signal transduction in bacteria. Nature 344:395–400 [CrossRef]
    [Google Scholar]
  33. Tambong J. T., Hofte M. ( 2001). Phenazines are involved in biocontrol of Pythium myriotylum on cocoyam by Pseudomonas aeruginosa PNA1. Eur J Plant Pathol 107:511–521 [View Article]
    [Google Scholar]
  34. Tomich C. S., Kaytes P. S., Olsen M. K., Patel H. ( 1988). Use of lacZ expression to monitor transcription. Plasmid 20:167–170 [View Article][PubMed]
    [Google Scholar]
  35. Wang D., Korban S. S., Zhao Y. F. ( 2009). The Rcs phosphorelay system is essential for pathogenicity in Erwinia amylovora . Mol Plant Pathol 10:277–290 [View Article][PubMed]
    [Google Scholar]
  36. Wang D., Korban S. S., Zhao Y. F. ( 2010). Molecular signature of differential virulence in natural isolates of Erwinia amylovora . Phytopathology 100:192–198 [View Article][PubMed]
    [Google Scholar]
  37. Wang D., Calla B., Vimolmangkang S., Wu X., Korban S. S., Huber S. C., Clough S. J., Zhao Y. ( 2011a). The orphan gene ybjN conveys pleiotropic effects on multicellular behavior and survival of Escherichia coli . PLoS ONE 6:e25293 [View Article][PubMed]
    [Google Scholar]
  38. Wang D., Korban S. S., Pusey P. L., Zhao Y. F. ( 2011b). Characterization of the RcsC sensor kinase from Erwinia amylovora and other Enterobacteria. Phytopathology 101:710–717 [View Article][PubMed]
    [Google Scholar]
  39. Wang D., Qi M., Calla B., Korban S. S., Clough S. J., Cock P. J., Sundin G. W., Toth I., Zhao Y. ( 2012). Genome-wide identification of genes regulated by the Rcs phosphorelay system in Erwinia amylovora . Mol Plant Microbe Interact 25:6–17 [View Article][PubMed]
    [Google Scholar]
  40. Whistler C. A., Pierson L. S. III ( 2003). Repression of phenazine antibiotic production in Pseudomonas aureofaciens strain 30–84 by RpeA. J Bacteriol 185:3718–3725 [View Article]
    [Google Scholar]
  41. Wood D. W., Pierson L. S. III ( 1996). The phzI gene of Pseudomonas aureofaciens 30-84 is responsible for the production of a diffusible signal required for phenazine antibiotic production. Gene 168:49–53 [View Article][PubMed]
    [Google Scholar]
  42. Wood D. W., Gong F., Daykin M. M., Williams P., Pierson L. S. III ( 1997). N-acyl-homoserine lactone-mediated regulation of phenazine gene expression by Pseudomonas aureofaciens 30-84 in the wheat rhizosphere. J Bacteriol 179:7663–7670[PubMed]
    [Google Scholar]
  43. Zhang Z., Pierson L. S. III ( 2001). A second quorum-sensing system regulates cell surface properties but not phenazine antibiotic production in Pseudomonas aureofaciens . Appl Environ Microbiol 67:4305–4315 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.059352-0
Loading
/content/journal/micro/10.1099/mic.0.059352-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error