1887

Abstract

The bacterial pathogen requires colonizination of the human small intestine to cause cholera. The anaerobic and slightly acidic conditions predominating there enhance toxicity of low copper concentrations and create a selective environment for bacteria with evolved detoxifying mechanisms. We reported previously that the VCA0260, VCA0261 and VC2216 gene products were synthesized only in grown in microaerobiosis or anaerobiosis. Here we show that ORFs VCA0261 and VCA0260 are actually combined into a single gene encoding a 18.7 kDa protein. Bioinformatic analyses linked this protein and the VC2216 gene product to copper tolerance. Following the approach of predict-mutate and test, we describe for the first time, to our knowledge, the copper tolerance systems operating in . Copper susceptibility analyses of mutants in VCA0261–0260, VC2216 or in the putative copper-tolerance-related VC2215 ( ATPase) and VC0974 (), under aerobic and anaerobic growth, revealed that CopA represents the main tolerance system under both conditions. The VC2216-encoded periplasmic protein contributes to resistance only under anaerobiosis in a CopA-functional background. The locus tag VCA0261–0260 encodes a copper-inducible, CueR-dependent, periplasmic protein, which mediates tolerance in aerobiosis, but under anaerobiosis its role is only evident in CopA knock-out mutants. None of the genes involved in copper homeostasis were required for virulence or colonization in the mouse model. We conclude that copper tolerance in , which lacks orthologues of the periplasmic copper tolerance proteins CueO, CusCFBA and CueP, involves CopA and CueR proteins along with the periplasmic Cot (VCA0261–0260) and CopG (VC2216) homologues.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.059345-0
2012-08-01
2021-07-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/8/2005.html?itemId=/content/journal/micro/10.1099/mic.0.059345-0&mimeType=html&fmt=ahah

References

  1. Abd H., Saeed A., Weintraub A., Nair G. B., Sandström G. ( 2007). Vibrio cholerae O1 strains are facultative intracellular bacteria, able to survive and multiply symbiotically inside the aquatic free-living amoeba Acanthamoeba castellanii . FEMS Microbiol Ecol 60:33–39 [View Article][PubMed]
    [Google Scholar]
  2. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. ( 1995). Short Protocols in Molecular Biology New York: John Wiley & Sons, Inc;
    [Google Scholar]
  3. Bagai I., Rensing C., Blackburn N. J., McEvoy M. M. ( 2008). Direct metal transfer between periplasmic proteins identifies a bacterial copper chaperone. Biochemistry 47:11408–11414 [View Article][PubMed]
    [Google Scholar]
  4. Barry A. N., Otoikhian A., Bhatt S., Shinde U., Tsivkovskii R., Blackburn N. J., Lutsenko S. ( 2011). The lumenal loop Met672-Pro707 of copper-transporting ATPase ATP7A binds metals and facilitates copper release from the intramembrane sites. J Biol Chem 286:26585–26594 [View Article][PubMed]
    [Google Scholar]
  5. Charbonnier J. B., Belin P., Moutiez M., Stura E. A., Quéméneur E. ( 1999). On the role of the cis-proline residue in the active site of DsbA. Protein Sci 8:96–105 [View Article][PubMed]
    [Google Scholar]
  6. Choi M., Davidson V. L. ( 2011). Cupredoxins–a study of how proteins may evolve to use metals for bioenergetic processes. Metallomics 3:140–151 [View Article][PubMed]
    [Google Scholar]
  7. Donnenberg M. S., Kaper J. B. ( 1991). Construction of an eae deletion mutant of enteropathogenic Escherichia coli by using a positive-selection suicide vector. Infect Immun 59:4310–4317[PubMed]
    [Google Scholar]
  8. Egler M., Grosse C., Grass G., Nies D. H. ( 2005). Role of the extracytoplasmic function protein family sigma factor RpoE in metal resistance of Escherichia coli . J Bacteriol 187:2297–2307 [View Article][PubMed]
    [Google Scholar]
  9. Espariz M., Checa S. K., Audero M. E., Pontel L. B., Soncini F. C. ( 2007). Dissecting the Salmonella response to copper. Microbiology 153:2989–2997 [View Article][PubMed]
    [Google Scholar]
  10. Faruque S. M., Nair G. B., Mekalanos J. J. ( 2004). Genetics of stress adaptation and virulence in toxigenic Vibrio cholerae . DNA Cell Biol 23:723–741 [View Article][PubMed]
    [Google Scholar]
  11. González-Guerrero M., Raimunda D., Cheng X., Argüello J. M. ( 2010). Distinct functional roles of homologous Cu+ efflux ATPases in Pseudomonas aeruginosa . Mol Microbiol 78:1246–1258 [View Article][PubMed]
    [Google Scholar]
  12. Grass G., Rensing C. ( 2001). Genes involved in copper homeostasis in Escherichia coli . J Bacteriol 183:2145–2147 [View Article][PubMed]
    [Google Scholar]
  13. Gupta S. D., Lee B. T., Camakaris J., Wu H. C. ( 1995). Identification of cutC and cutF (nlpE) genes involved in copper tolerance in Escherichia coli . J Bacteriol 177:4207–4215[PubMed]
    [Google Scholar]
  14. Heidelberg J. F., Eisen J. A., Nelson W. C., Clayton R. A., Gwinn M. L., Dodson R. J., Haft D. H., Hickey E. K., Peterson J. D. & other authors ( 2000). DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae . Nature 406:477–483 [View Article][PubMed]
    [Google Scholar]
  15. Hiniker A., Collet J. F., Bardwell J. C. ( 2005). Copper stress causes an in vivo requirement for the Escherichia coli disulfide isomerase DsbC. J Biol Chem 280:33785–33791 [View Article][PubMed]
    [Google Scholar]
  16. Hirano Y., Hossain M. M., Takeda K., Tokuda H., Miki K. ( 2006). Purification, crystallization and preliminary X-ray crystallographic analysis of the outer membrane lipoprotein NlpE from Escherichia coli . Acta Crystallogr Sect F Struct Biol Cryst Commun 62:1227–1230 [View Article][PubMed]
    [Google Scholar]
  17. Hirst T. R., Holmgren J. ( 1987). Transient entry of enterotoxin subunits into the periplasm occurs during their secretion from Vibrio cholerae . J Bacteriol 169:1037–1045[PubMed]
    [Google Scholar]
  18. Janssen G. R., Bibb M. J. ( 1993). Derivatives of pUC18 that have BglII sites flanking a modified multiple cloning site and that retain the ability to identify recombinant clones by visual screening of Escherichia coli colonies. Gene 124:133–134 [View Article][PubMed]
    [Google Scholar]
  19. Kim E. H., Rensing C., McEvoy M. M. ( 2010). Chaperone-mediated copper handling in the periplasm. Nat Prod Rep 27:711–719 [View Article][PubMed]
    [Google Scholar]
  20. Kinch L. N., Baker D., Grishin N. V. ( 2003). Deciphering a novel thioredoxin-like fold family. Proteins 52:323–331 [View Article][PubMed]
    [Google Scholar]
  21. Li J., Ji C., Chen J., Yang Z., Wang Y., Fei X., Zheng M., Gu X., Wen G. & other authors ( 2005). Identification and characterization of a novel Cut family cDNA that encodes human copper transporter protein CutC. Biochem Biophys Res Commun 337:179–183 [View Article][PubMed]
    [Google Scholar]
  22. Lim S. Y., Joe M. H., Song S. S., Lee M. H., Foster J. W., Park Y. K., Choi S. Y., Lee I. S. ( 2002). CuiD is a crucial gene for survival at high copper environment in Salmonella enterica serovar Typhimurium . Mol Cells 14:177–184[PubMed]
    [Google Scholar]
  23. Macomber L., Imlay J. A. ( 2009). The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. Proc Natl Acad Sci U S A 106:8344–8349 [View Article][PubMed]
    [Google Scholar]
  24. Macomber L., Rensing C., Imlay J. A. ( 2007). Intracellular copper does not catalyze the formation of oxidative DNA damage in Escherichia coli . J Bacteriol 189:1616–1626 [View Article][PubMed]
    [Google Scholar]
  25. Marchler-Bauer A., Lu S., Anderson J. B., Chitsaz F., Derbyshire M. K., DeWeese-Scott C., Fong J. H., Geer L. Y., Geer R. C. & other authors ( 2011). CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res 39:Database issueD225–D229 [View Article][PubMed]
    [Google Scholar]
  26. Marrero K., Sánchez A., Rodríguez-Ulloa A., González L. J., Castellanos-Serra L., Paz-Lago D., Campos J., Rodríguez B. L., Suzarte E. & other authors ( 2009). Anaerobic growth promotes synthesis of colonization factors encoded at the vibrio pathogenicity island in Vibrio cholerae El Tor. Res Microbiol 160:48–56 [View Article][PubMed]
    [Google Scholar]
  27. Monchy S., Benotmane M. A., Wattiez R., van Aelst S., Auquier V., Borremans B., Mergeay M., Taghavi S., van der Lelie D., Vallaeys T. ( 2006). Transcriptomic and proteomic analyses of the pMOL30-encoded copper resistance in Cupriavidus metallidurans strain CH34. Microbiology 152:1765–1776 [View Article][PubMed]
    [Google Scholar]
  28. Mueller R. S., McDougald D., Cusumano D., Sodhi N., Kjelleberg S., Azam F., Bartlett D. H. ( 2007). Vibrio cholerae strains possess multiple strategies for abiotic and biotic surface colonization. J Bacteriol 189:5348–5360 [View Article][PubMed]
    [Google Scholar]
  29. Osman D., Cavet J. S. ( 2008). Copper homeostasis in bacteria. Adv Appl Microbiol 65:217–247 [View Article][PubMed]
    [Google Scholar]
  30. Osman D., Waldron K. J., Denton H., Taylor C. M., Grant A. J., Mastroeni P., Robinson N. J., Cavet J. S. ( 2010). Copper homeostasis in Salmonella is atypical and copper-CueP is a major periplasmic metal complex. J Biol Chem 285:25259–25268 [View Article][PubMed]
    [Google Scholar]
  31. Outten F. W., Outten C. E., Hale J., O’Halloran T. V. ( 2000). Transcriptional activation of an Escherichia coli copper efflux regulon by the chromosomal MerR homologue, cueR . J Biol Chem 275:31024–31029 [View Article][PubMed]
    [Google Scholar]
  32. Outten F. W., Huffman D. L., Hale J. A., O’Halloran T. V. ( 2001). The independent cue and cus systems confer copper tolerance during aerobic and anaerobic growth in Escherichia coli . J Biol Chem 276:30670–30677 [View Article][PubMed]
    [Google Scholar]
  33. Pérez Audero M. E., Podoroska B. M., Ibáñez M. M., Cauerhff A., Checa S. K., Soncini F. C. ( 2010). Target transcription binding sites differentiate two groups of MerR-monovalent metal ion sensors. Mol Microbiol 78:853–865 [View Article][PubMed]
    [Google Scholar]
  34. Pontel L. B., Soncini F. C. ( 2009). Alternative periplasmic copper-resistance mechanisms in Gram negative bacteria. Mol Microbiol 73:212–225 [View Article][PubMed]
    [Google Scholar]
  35. Raimunda D., González-Guerrero M., Leeber B. W. III, Argüello J. M. ( 2011). The transport mechanism of bacterial Cu+-ATPases: distinct efflux rates adapted to different function. Biometals 24:467–475 [View Article][PubMed]
    [Google Scholar]
  36. Rensing C., Grass G. ( 2003). Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS Microbiol Rev 27:197–213 [View Article][PubMed]
    [Google Scholar]
  37. Rensing C., Fan B., Sharma R., Mitra B., Rosen B. P. ( 2000). CopA: An Escherichia coli Cu(I)-translocating P-type ATPase. Proc Natl Acad Sci U S A 97:652–656 [View Article][PubMed]
    [Google Scholar]
  38. Robinson N. J., Winge D. R. ( 2010). Copper metallochaperones. Annu Rev Biochem 79:537–562 [View Article][PubMed]
    [Google Scholar]
  39. Roy A., Kucukural A., Zhang Y. ( 2010). I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5:725–738 [View Article][PubMed]
    [Google Scholar]
  40. Rubino J. T., Franz K. J. ( 2012). Coordination chemistry of copper proteins: how nature handles a toxic cargo for essential function. J Inorg Biochem 107:129–143 [View Article][PubMed]
    [Google Scholar]
  41. Sandström G., Saeed A., Abd H. ( 2010). Acanthamoeba polyphaga is a possible host for Vibrio cholerae in aquatic environments. Exp Parasitol 126:65–68 [View Article][PubMed]
    [Google Scholar]
  42. Senanayake S. D., Brian D. A. ( 1995). Precise large deletions by the PCR-based overlap extension method. Mol Biotechnol 4:13–15 [View Article][PubMed]
    [Google Scholar]
  43. Simon R., Priefer U., Pühler A. ( 1983). A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Biotechnology (N Y) 1:784–791 [View Article]
    [Google Scholar]
  44. Singh S. K., Grass G., Rensing C., Montfort W. R. ( 2004). Cuprous oxidase activity of CueO from Escherichia coli . J Bacteriol 186:7815–7817 [View Article][PubMed]
    [Google Scholar]
  45. Stoebner J. A., Butterton J. R., Calderwood S. B., Payne S. M. ( 1992). Identification of the vibriobactin receptor of Vibrio cholerae . J Bacteriol 174:3270–3274[PubMed]
    [Google Scholar]
  46. Stoyanov J. V., Hobman J. L., Brown N. L. ( 2001). CueR (YbbI) of Escherichia coli is a MerR family regulator controlling expression of the copper exporter CopA. Mol Microbiol 39:502–512 [View Article][PubMed]
    [Google Scholar]
  47. Stoyanov J. V., Magnani D., Solioz M. ( 2003). Measurement of cytoplasmic copper, silver, and gold with a lux biosensor shows copper and silver, but not gold, efflux by the CopA ATPase of Escherichia coli . FEBS Lett 546:391–394 [View Article][PubMed]
    [Google Scholar]
  48. Su D., Berndt C., Fomenko D. E., Holmgren A., Gladyshev V. N. ( 2007). A conserved cis-proline precludes metal binding by the active site thiolates in members of the thioredoxin family of proteins. Biochemistry 46:6903–6910 [View Article][PubMed]
    [Google Scholar]
  49. Taylor L. A., Rose R. E. ( 1988). A correction in the nucleotide sequence of the Tn903 kanamycin resistance determinant in pUC4K. Nucleic Acids Res 16:358 [View Article][PubMed]
    [Google Scholar]
  50. Teitzel G. M., Geddie A., De Long S. K., Kirisits M. J., Whiteley M., Parsek M. R. ( 2006). Survival and growth in the presence of elevated copper: transcriptional profiling of copper-stressed Pseudomonas aeruginosa . J Bacteriol 188:7242–7256 [View Article][PubMed]
    [Google Scholar]
  51. Tom-Petersen A., Hosbond C., Nybroe O. ( 2001). Identification of copper-induced genes in Pseudomonas fluorescens and use of a reporter strain to monitor bioavailable copper in soil. FEMS Microbiol Ecol 38:59–67 [View Article]
    [Google Scholar]
  52. Valle E., Ledón T., Cedré B., Campos J., Valmaseda T., Rodríguez B., García L., Marrero K., Benítez J. & other authors ( 2000). Construction and characterization of a nonproliferative El Tor cholera vaccine candidate derived from strain 638. Infect Immun 68:6411–6418 [View Article][PubMed]
    [Google Scholar]
  53. von Krüger W. M. A., Santos Lery L. M., Soares M. R., Saloum de Neves-Manta F., Batista e Silva C. M., da Costa Neves-Ferreira A. G., Perales J., Bisch P. M. ( 2006). The phosphate-starvation response in Vibrio cholerae O1 and phoB mutant under proteomic analysis: disclosing functions involved in adaptation, survival and virulence. Proteomics 6:1495–1511 [View Article][PubMed]
    [Google Scholar]
  54. Weissman Z., Berdicevsky I., Cavari B. Z., Kornitzer D. ( 2000). The high copper tolerance of Candida albicans is mediated by a P-type ATPase. Proc Natl Acad Sci U S A 97:3520–3525 [View Article][PubMed]
    [Google Scholar]
  55. Zhang X., Bremer H. ( 1995). Control of the Escherichia coli rrnB P1 promoter strength by ppGpp. J Biol Chem 270:11181–11189 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.059345-0
Loading
/content/journal/micro/10.1099/mic.0.059345-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error