1887

Abstract

The Min system plays an important role in ensuring that cell division occurs at mid-cell in rod-shaped bacteria. In pole-to-pole oscillation of the Min proteins specifically inhibits polar septation. This system also prevents polar division in during vegetative growth; however, the Min proteins do not oscillate in this organism. The Min system of plays a distinct role during sporulation, a process of differentiation which begins with an asymmetrical cell division. Here, we show that oscillation of the Min proteins can be reproduced following their introduction into cells. Further, we present evidence that the oscillatory behaviour of the Min system inhibits sporulation. We propose that an alternative Min system mechanism avoiding oscillation is evolutionarily important because oscillation of the Min system is incompatible with efficient asymmetrical septum formation and sporulation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.059295-0
2012-08-01
2020-01-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/8/1972.html?itemId=/content/journal/micro/10.1099/mic.0.059295-0&mimeType=html&fmt=ahah

References

  1. Adler H. I., Fisher W. D., Cohen A., Hardigree A. A.. ( 1967;). Miniature Escherichia coli cells deficient in DNA. Proc Natl Acad Sci U S A57:321–326 [CrossRef][PubMed]
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. ( 1997;). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402 [CrossRef][PubMed]
    [Google Scholar]
  3. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Siedman J. G., Smith J. A., Struhl K.. ( 1987;). Current Protocols in Molecular Biology New York: Greene Publishing and Wiley;
    [Google Scholar]
  4. Barák I., Prepiak P., Schmeisser F.. ( 1998;). MinCD proteins control the septation process during sporulation of Bacillus subtilis. J Bacteriol180:5327–5333[PubMed]
    [Google Scholar]
  5. Barák I., Ricca E., Cutting S. M.. ( 2005;). From fundamental studies of sporulation to applied spore research. Mol Microbiol55:330–338 [CrossRef][PubMed]
    [Google Scholar]
  6. Barák I., Muchová K., Wilkinson A. J., O’Toole P. J., Pavlendová N.. ( 2008;). Lipid spirals in Bacillus subtilis and their role in cell division. Mol Microbiol68:1315–1327 [CrossRef][PubMed]
    [Google Scholar]
  7. Ben-Yehuda S., Rudner D. Z., Losick R.. ( 2003;). RacA, a bacterial protein that anchors chromosomes to the cell poles. Science299:532–536 [CrossRef][PubMed]
    [Google Scholar]
  8. Benson A. K., Haldenwang W. G.. ( 1993;). Regulation of σB levels and activity in Bacillus subtilis. J Bacteriol175:2347–2356[PubMed]
    [Google Scholar]
  9. Bi E. F., Lutkenhaus J.. ( 1991;). FtsZ ring structure associated with division in Escherichia coli. Nature354:161–164 [CrossRef][PubMed]
    [Google Scholar]
  10. Bramkamp M., Emmins R., Weston L., Donovan C., Daniel R. A., Errington J.. ( 2008;). A novel component of the division-site selection system of Bacillus subtilis and a new mode of action for the division inhibitor MinCD. Mol Microbiol70:1556–1569 [CrossRef][PubMed]
    [Google Scholar]
  11. de Boer P. A., Crossley R. E., Rothfield L. I.. ( 1989;). A division inhibitor and a topological specificity factor coded for by the minicell locus determine proper placement of the division septum in E. coli. Cell56:641–649 [CrossRef][PubMed]
    [Google Scholar]
  12. de Boer P. A., Crossley R. E., Hand A. R., Rothfield L. I.. ( 1991;). The MinD protein is a membrane ATPase required for the correct placement of the Escherichia coli division site. EMBO J10:4371–4380[PubMed]
    [Google Scholar]
  13. Di Ventura B., Sourjik V.. ( 2011;). Self-organized partitioning of dynamically localized proteins in bacterial cell division. Mol Syst Biol7:457 [CrossRef][PubMed]
    [Google Scholar]
  14. Drew D. A., Osborn M. J., Rothfield L. I.. ( 2005;). A polymerization-depolymerization model that accurately generates the self-sustained oscillatory system involved in bacterial division site placement. Proc Natl Acad Sci U S A102:6114–6118 [CrossRef][PubMed]
    [Google Scholar]
  15. Edwards D. H., Errington J.. ( 1997;). The Bacillus subtilis DivIVA protein targets to the division septum and controls the site specificity of cell division. Mol Microbiol24:905–915 [CrossRef][PubMed]
    [Google Scholar]
  16. Eswaramoorthy P., Erb M. L., Gregory J. A., Silverman J., Pogliano K., Pogliano J., Ramamurthi K. S.. ( 2011;). Cellular architecture mediates DivIVA ultrastructure and regulates Min activity in Bacillus subtilis. MBio2:e00257–e11 [CrossRef][PubMed]
    [Google Scholar]
  17. Fu X., Shih Y. L., Zhang Y., Rothfield L. I.. ( 2001;). The MinE ring required for proper placement of the division site is a mobile structure that changes its cellular location during the Escherichia coli division cycle. Proc Natl Acad Sci U S A98:980–985 [CrossRef][PubMed]
    [Google Scholar]
  18. Gregory J. A., Becker E. C., Pogliano K.. ( 2008;). Bacillus subtilis MinC destabilizes FtsZ-rings at new cell poles and contributes to the timing of cell division. Genes Dev22:3475–3488 [CrossRef][PubMed]
    [Google Scholar]
  19. Guérout-Fleury A. M., Frandsen N., Stragier P.. ( 1996;). Plasmids for ectopic integration in Bacillus subtilis. Gene180:57–61 [CrossRef][PubMed]
    [Google Scholar]
  20. Hale C. A., Meinhardt H., de Boer P. A.. ( 2001;). Dynamic localization cycle of the cell division regulator MinE in Escherichia coli. EMBO J20:1563–1572 [CrossRef][PubMed]
    [Google Scholar]
  21. Harwood C. R., Cutting S. M.. ( 1990;). Molecular Biological Methods for Bacillus Chichester, UK: Wiley;
    [Google Scholar]
  22. Hoch J. A.. ( 1993;). Regulation of the phosphorelay and the initiation of sporulation in Bacillus subtilis. Annu Rev Microbiol47:441–465 [CrossRef][PubMed]
    [Google Scholar]
  23. Hu Z., Lutkenhaus J.. ( 1999;). Topological regulation of cell division in Escherichia coli involves rapid pole to pole oscillation of the division inhibitor MinC under the control of MinD and MinE. Mol Microbiol34:82–90 [CrossRef][PubMed]
    [Google Scholar]
  24. Hu Z., Lutkenhaus J.. ( 2001;). Topological regulation of cell division in E. coli. Spatiotemporal oscillation of MinD requires stimulation of its ATPase by MinE and phospholipid. Mol Cell7:1337–1343 [CrossRef][PubMed]
    [Google Scholar]
  25. Hu Z., Lutkenhaus J.. ( 2003;). A conserved sequence at the C-terminus of MinD is required for binding to the membrane and targeting MinC to the septum. Mol Microbiol47:345–355 [CrossRef][PubMed]
    [Google Scholar]
  26. Hu Z., Gogol E. P., Lutkenhaus J.. ( 2002;). Dynamic assembly of MinD on phospholipid vesicles regulated by ATP and MinE. Proc Natl Acad Sci U S A99:6761–6766 [CrossRef][PubMed]
    [Google Scholar]
  27. Ju J., Luo T., Haldenwang W. G.. ( 1998;). Forespore expression and processing of the SigE transcription factor in wild-type and mutant Bacillus subtilis. J Bacteriol180:1673–1681[PubMed]
    [Google Scholar]
  28. Juarez J. R., Margolin W.. ( 2010;). Changes in the Min oscillation pattern before and after cell birth. J Bacteriol192:4134–4142 [CrossRef][PubMed]
    [Google Scholar]
  29. Kaiser D.. ( 2003;). Coupling cell movement to multicellular development in myxobacteria. Nat Rev Microbiol1:45–54 [CrossRef][PubMed]
    [Google Scholar]
  30. Karimova G., Pidoux J., Ullmann A., Ladant D.. ( 1998;). A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc Natl Acad Sci U S A95:5752–5756 [CrossRef][PubMed]
    [Google Scholar]
  31. Kusters R., Dowhan W., de Kruijff B.. ( 1991;). Negatively charged phospholipids restore prePhoE translocation across phosphatidylglycerol-depleted Escherichia coli inner membranes. J Biol Chem266:8659–8662[PubMed]
    [Google Scholar]
  32. Lenarcic R., Halbedel S., Visser L., Shaw M., Wu L. J., Errington J., Marenduzzo D., Hamoen L. W.. ( 2009;). Localisation of DivIVA by targeting to negatively curved membranes. EMBO J28:2272–2282 [CrossRef][PubMed]
    [Google Scholar]
  33. Loose M., Fischer-Friedrich E., Ries J., Kruse K., Schwille P.. ( 2008;). Spatial regulators for bacterial cell division self-organize into surface waves in vitro. Science320:789–792 [CrossRef][PubMed]
    [Google Scholar]
  34. López C. S., Heras H., Ruzal S. M., Sánchez-Rivas C., Rivas E. A.. ( 1998;). Variations of the envelope composition of Bacillus subtilis during growth in hyperosmotic medium. Curr Microbiol36:55–61 [CrossRef][PubMed]
    [Google Scholar]
  35. Marston A. L., Errington J.. ( 1999;). Selection of the midcell division site in Bacillus subtilis through MinD-dependent polar localization and activation of MinC. Mol Microbiol33:84–96 [CrossRef][PubMed]
    [Google Scholar]
  36. Marston A. L., Thomaides H. B., Edwards D. H., Sharpe M. E., Errington J.. ( 1998;). Polar localization of the MinD protein of Bacillus subtilis and its role in selection of the mid-cell division site. Genes Dev12:3419–3430 [CrossRef][PubMed]
    [Google Scholar]
  37. Meselson M., Yuan R.. ( 1968;). DNA restriction enzyme from E. coli. Nature217:1110–1114 [CrossRef][PubMed]
    [Google Scholar]
  38. Miller J. H.. ( 1972;). Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  39. Molle V., Fujita M., Jensen S. T., Eichenberger P., González-Pastor J. E., Liu J. S., Losick R.. ( 2003;). The Spo0A regulon of Bacillus subtilis. Mol Microbiol50:1683–1701 [CrossRef][PubMed]
    [Google Scholar]
  40. Patrick J. E., Kearns D. B.. ( 2008;). MinJ (YvjD) is a topological determinant of cell division in Bacillus subtilis. Mol Microbiol70:1166–1179 [CrossRef][PubMed]
    [Google Scholar]
  41. Pavlendová N., Muchová K., Barák I.. ( 2010;). Expression of Escherichia coli Min system in Bacillus subtilis and its effect on cell division. FEMS Microbiol Lett302:58–68 [CrossRef][PubMed]
    [Google Scholar]
  42. Perego M., Hoch J. A.. ( 2002;). Two component systems, phosphorelays, and regulation of their activities by phophatases. Bacillus subtilis and its Closest Relatives: from Genes to Cells483–517 Sonenshein A. L., Hoch J. A., Losick R.. Washington, DC: American Society for Microbiology Press;
    [Google Scholar]
  43. Piggot P. J., Losick R.. ( 2002;). Sporulation genes and intercompartmental regulation. Bacillus subtilis and its Closest Relatives: from Genes to Cells473–481 Sonenshein A. L., Hoch J. A., Losick R.. Washington, DC: American Society for Microbiology Press;
    [Google Scholar]
  44. Ramamurthi K. S., Losick R.. ( 2009;). Negative membrane curvature as a cue for subcellular localization of a bacterial protein. Proc Natl Acad Sci U S A106:13541–13545 [CrossRef][PubMed]
    [Google Scholar]
  45. Ramirez-Arcos S., Szeto J., Dillon J. A., Margolin W.. ( 2002;). Conservation of dynamic localization among MinD and MinE orthologues: oscillation of Neisseria gonorrhoeae proteins in Escherichia coli. Mol Microbiol46:493–504 [CrossRef][PubMed]
    [Google Scholar]
  46. Raskin D. M., de Boer P. A.. ( 1999a;). Rapid pole-to-pole oscillation of a protein required for directing division to the middle of Escherichia coli. Proc Natl Acad Sci U S A96:4971–4976 [CrossRef][PubMed]
    [Google Scholar]
  47. Raskin D. M., de Boer P. A.. ( 1999b;). MinDE-dependent pole-to-pole oscillation of division inhibitor MinC in Escherichia coli. J Bacteriol181:6419–6424[PubMed]
    [Google Scholar]
  48. Reeve J. N., Mendelson N. H., Coyne S. I., Hallock L. L., Cole R. M.. ( 1973;). Minicells of Bacillus subtilis. J Bacteriol114:860–873[PubMed]
    [Google Scholar]
  49. Rothfield L., Taghbalout A., Shih Y. L.. ( 2005;). Spatial control of bacterial division-site placement. Nat Rev Microbiol3:959–968 [CrossRef][PubMed]
    [Google Scholar]
  50. Sambrook J., Fritsch E. F., Maniatis T.. ( 1989;). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  51. Schaeffer P., Millet J., Aubert J. P.. ( 1965;). Catabolic repression of bacterial sporulation. Proc Natl Acad Sci U S A54:704–711 [CrossRef][PubMed]
    [Google Scholar]
  52. Schmeisser F., Brannigan J. A., Lewis R. J., Wilkinson A. J., Youngman P., Barák I.. ( 2000;). A new mutation in spo0A with intragenic suppressors in the effector domain. FEMS Microbiol Lett185:123–128 [CrossRef][PubMed]
    [Google Scholar]
  53. Sharp M. D., Pogliano K.. ( 2002;). MinCD-dependent regulation of the polarity of SpoIIIE assembly and DNA transfer. EMBO J21:6267–6274 [CrossRef][PubMed]
    [Google Scholar]
  54. Shih Y. L., Fu X., King G. F., Le T., Rothfield L.. ( 2002;). Division site placement in E. coli: mutations that prevent formation of the MinE ring lead to loss of the normal midcell arrest of growth of polar MinD membrane domains. EMBO J21:3347–3357 [CrossRef][PubMed]
    [Google Scholar]
  55. Shih Y. L., Le T., Rothfield L.. ( 2003;). Division site selection in Escherichia coli involves dynamic redistribution of Min proteins within coiled structures that extend between the two cell poles. Proc Natl Acad Sci U S A100:7865–7870 [CrossRef][PubMed]
    [Google Scholar]
  56. Szeto T. H., Rowland S. L., Habrukowich C. L., King G. F.. ( 2003;). The MinD membrane targeting sequence is a transplantable lipid-binding helix. J Biol Chem278:40050–40056 [CrossRef][PubMed]
    [Google Scholar]
  57. Thomaides H. B., Freeman M., El Karoui M., Errington J.. ( 2001;). Division site selection protein DivIVA of Bacillus subtilis has a second distinct function in chromosome segregation during sporulation. Genes Dev15:1662–1673 [CrossRef][PubMed]
    [Google Scholar]
  58. Tocheva E. I., Matson E. G., Morris D. M., Moussavi F., Leadbetter J. R., Jensen G. J.. ( 2011;). Peptidoglycan remodeling and conversion of an inner membrane into an outer membrane during sporulation. Cell146:799–812 [CrossRef][PubMed]
    [Google Scholar]
  59. Touhami A., Jericho M., Rutenberg A. D.. ( 2006;). Temperature dependence of MinD oscillation in Escherichia coli: running hot and fast. J Bacteriol188:7661–7667 [CrossRef][PubMed]
    [Google Scholar]
  60. Webb C. D., Teleman A., Gordon S., Straight A., Belmont A., Lin D. C., Grossman A. D., Wright A., Losick R.. ( 1997;). Bipolar localization of the replication origin regions of chromosomes in vegetative and sporulating cells of B. subtilis. Cell88:667–674 [CrossRef][PubMed]
    [Google Scholar]
  61. Wu L. J., Errington J.. ( 1994;). Bacillus subtilis SpoIIIE protein required for DNA segregation during asymmetric cell division. Science264:572–575 [CrossRef][PubMed]
    [Google Scholar]
  62. Wu L. J., Errington J.. ( 1998;). Use of asymmetric cell division and spoIIIE mutants to probe chromosome orientation and organization in Bacillus subtilis. Mol Microbiol27:777–786 [CrossRef][PubMed]
    [Google Scholar]
  63. Wu L. J., Errington J.. ( 2003;). RacA and the Soj–Spo0J system combine to effect polar chromosome segregation in sporulating Bacillus subtilis. Mol Microbiol49:1463–1475 [CrossRef][PubMed]
    [Google Scholar]
  64. Youngman P. J., Perkins J. B., Losick R.. ( 1984;). Construction of a cloning site near one end of Tn917 into which foreign DNA may be inserted without affecting transposition in Bacillus subtilis or expression of the transposon-borne erm gene. Plasmid12:1–9 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.059295-0
Loading
/content/journal/micro/10.1099/mic.0.059295-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error