1887

Abstract

Here, we show that ATCC 13032 co-metabolizes formate when it is grown with glucose as the carbon and energy source. CO measurements during bioreactor cultivation and use of C-labelled formate demonstrated that formate is almost completely oxidized to CO. The deletion of (cg0618), annotated as formate dehydrogenase (FDH) and located in a cluster of genes conserved in the family , prevented formate utilization. Similarly, deletion of (cg0616) resulted in the inability to metabolize formate and deletion of cg0617 markedly reduced formate utilization. These results illustrated that all three gene products are required for FDH activity. Growth studies with molybdate and tungstate indicated that the FDH from ATCC 13032 is a molybdenum-dependent enzyme. The presence of 100 mM formate caused a 25 % lowered growth rate during cultivation of ATCC 13032 wild-type in glucose minimal medium. This inhibitory effect was increased in the strains lacking FDH activity. Our data demonstrate that ATCC 13032 possesses an FDH with a currently unknown electron acceptor. The presence of the FDH might help the soil bacterium ATCC 13032 to alleviate growth retardation caused by formate, which is ubiquitously present in the environment.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.059196-0
2012-09-01
2021-08-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/9/2428.html?itemId=/content/journal/micro/10.1099/mic.0.059196-0&mimeType=html&fmt=ahah

References

  1. Abaibou H., Pommier J., Benoit S., Giordano G., Mandrand-Berthelot M. A. ( 1995). Expression and characterization of the Escherichia coli fdo locus and a possible physiological role for aerobic formate dehydrogenase. J Bacteriol 177:7141–7149[PubMed]
    [Google Scholar]
  2. Abe S., Takayama K., Kinoshita S. ( 1967). Taxonomical studies on glutamic acid producing bacteria. J Gen Appl Microbiol 13:279–301 [View Article]
    [Google Scholar]
  3. Ahumada I., Mendoza J., Escudero P., Mossert K., Ascar L. ( 2001). Determination of organic acids of low molecular weight and phosphate in soil by capillary electrophoresis. J AOAC Int 84:1057–1064[PubMed]
    [Google Scholar]
  4. Axley M. J., Grahame D. A., Stadtman T. C. ( 1990). Escherichia coli formate-hydrogen lyase. Purification and properties of the selenium-dependent formate dehydrogenase component. J Biol Chem 265:18213–18218[PubMed]
    [Google Scholar]
  5. Bäumchen C., Roth A. H., Biedendieck R., Malten M., Follmann M., Sahm H., Bringer-Meyer S., Jahn D. ( 2007). D-mannitol production by resting state whole cell biotransformation of d-fructose by heterologous mannitol and formate dehydrogenase gene expression in Bacillus megaterium . Biotechnol J 2:1408–1416 [View Article][PubMed]
    [Google Scholar]
  6. Blombach B., Riester T., Wieschalka S., Ziert C., Youn J. W., Wendisch V. F., Eikmanns B. J. ( 2011). Corynebacterium glutamicum tailored for efficient isobutanol production. Appl Environ Microbiol 77:3300–3310 [View Article][PubMed]
    [Google Scholar]
  7. Bowien B., Kusian B. ( 2002). Genetics and control of CO2 assimilation in the chemoautotroph Ralstonia eutropha . Arch Microbiol 178:85–93 [View Article][PubMed]
    [Google Scholar]
  8. Boyington J. C., Gladyshev V. N., Khangulov S. V., Stadtman T. C., Sun P. D. ( 1997). Crystal structure of formate dehydrogenase H: catalysis involving Mo, molybdopterin, selenocysteine, and an Fe4S4 cluster. Science 275:1305–1308 [View Article][PubMed]
    [Google Scholar]
  9. Buschke N., Schröder H., Wittmann C. ( 2011). Metabolic engineering of Corynebacterium glutamicum for production of 1,5-diaminopentane from hemicellulose. Biotechnol J 6:306–317 [View Article][PubMed]
    [Google Scholar]
  10. Chistoserdova L., Laukel M., Portais J. C., Vorholt J. A., Lidstrom M. E. ( 2004). Multiple formate dehydrogenase enzymes in the facultative methylotroph Methylobacterium extorquens AM1 are dispensable for growth on methanol. J Bacteriol 186:22–28 [View Article][PubMed]
    [Google Scholar]
  11. Chistoserdova L., Crowther G. J., Vorholt J. A., Skovran E., Portais J. C., Lidstrom M. E. ( 2007). Identification of a fourth formate dehydrogenase in Methylobacterium extorquens AM1 and confirmation of the essential role of formate oxidation in methylotrophy. J Bacteriol 189:9076–9081 [View Article][PubMed]
    [Google Scholar]
  12. Crable B. R., Plugge C. M., McInerney M. J., Stams A. J. ( 2011). Formate formation and formate conversion in biological fuels production. Enzyme Res 2011:532–536[PubMed] [CrossRef]
    [Google Scholar]
  13. Cramm R. ( 2009). Genomic view of energy metabolism in Ralstonia eutropha H16. J Mol Microbiol Biotechnol 16:38–52 [View Article][PubMed]
    [Google Scholar]
  14. Eggeling L., Bott M. ( 2005). Handbook of Corynebacterium glutamicum Boca Raton, FL: CRC Press, Taylor & Francis Group; [View Article]
    [Google Scholar]
  15. Eikmanns B. J., Thum-Schmitz N., Eggeling L., Lüdtke K. U., Sahm H. ( 1994). Nucleotide sequence, expression and transcriptional analysis of the Corynebacterium glutamicum gltA gene encoding citrate synthase. Microbiology 140:1817–1828 [View Article][PubMed]
    [Google Scholar]
  16. Ferry J. G. ( 2011). Fundamentals of methanogenic pathways that are key to the biomethanation of complex biomass. Curr Opin Biotechnol 22:351–357 [View Article][PubMed]
    [Google Scholar]
  17. Friedebold J., Bowien B. ( 1993). Physiological and biochemical characterization of the soluble formate dehydrogenase, a molybdoenzyme from Alcaligenes eutrophus . J Bacteriol 175:4719–4728[PubMed]
    [Google Scholar]
  18. Fröhlich P., Albert K., Bertau M. ( 2011). Formate dehydrogenase – a biocatalyst with novel applications in organic chemistry. Org Biomol Chem 9:7941–7950 [View Article][PubMed]
    [Google Scholar]
  19. Frunzke J., Engels V., Hasenbein S., Gätgens C., Bott M. ( 2008). Co-ordinated regulation of gluconate catabolism and glucose uptake in Corynebacterium glutamicum by two functionally equivalent transcriptional regulators, GntR1 and GntR2. Mol Microbiol 67:305–322 [View Article][PubMed]
    [Google Scholar]
  20. Gopinath V., Meiswinkel T. M., Wendisch V. F., Nampoothiri K. M. ( 2011). Amino acid production from rice straw and wheat bran hydrolysates by recombinant pentose-utilizing Corynebacterium glutamicum . Appl Microbiol Biotechnol 92:985–996 [View Article][PubMed]
    [Google Scholar]
  21. Hanahan D. ( 1983). Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580 [View Article][PubMed]
    [Google Scholar]
  22. Hille R. ( 2002). Molybdenum and tungsten in biology. Trends Biochem Sci 27:360–367 [View Article][PubMed]
    [Google Scholar]
  23. Ikeda M., Nakagawa S. ( 2003). The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl Microbiol Biotechnol 62:99–109 [View Article][PubMed]
    [Google Scholar]
  24. Ingledew W. J., Poole R. K. ( 1984). The respiratory chains of Escherichia coli . Microbiol Rev 48:222–271[PubMed]
    [Google Scholar]
  25. Johnson M. K., Rees D. C., Adams M. W. ( 1996). Tungstoenzymes. Chem Rev 96:2817–2840 [View Article][PubMed]
    [Google Scholar]
  26. Jormakka M., Törnroth S., Abramson J., Byrne B., Iwata S. ( 2002). Purification and crystallization of the respiratory complex formate dehydrogenase-N from Escherichia coli . Acta Crystallogr D Biol Crystallogr 58:160–162 [View Article][PubMed]
    [Google Scholar]
  27. Jormakka M., Byrne B., Iwata S. ( 2003). Formate dehydrogenase – a versatile enzyme in changing environments. Curr Opin Struct Biol 13:418–423 [View Article][PubMed]
    [Google Scholar]
  28. Kabus A., Georgi T., Wendisch V. F., Bott M. ( 2007). Expression of the Escherichia coli pntAB genes encoding a membrane-bound transhydrogenase in Corynebacterium glutamicum improves l-lysine formation. Appl Microbiol Biotechnol 75:47–53 [View Article][PubMed]
    [Google Scholar]
  29. Kalinowski J., Bathe B., Bartels D., Bischoff N., Bott M., Burkovski A., Dusch N., Eggeling L., Eikmanns B. J. & other authors ( 2003). The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of l-aspartate-derived amino acids and vitamins. J Biotechnol 104:5–25 [View Article][PubMed]
    [Google Scholar]
  30. Karzanov V. V., Correa C. M., Bogatsky Y. G., Netrusov A. I. ( 1991). Alternative NAD+-dependent formate dehydrogenases in the facultative methylotroph Mycobacterium vaccae 10. FEMS Microbiol Lett 81:95–99 [View Article][PubMed]
    [Google Scholar]
  31. Keilhauer C., Eggeling L., Sahm H. ( 1993). Isoleucine synthesis in Corynebacterium glutamicum: molecular analysis of the ilvB-ilvN-ilvC operon. J Bacteriol 175:5595–5603[PubMed]
    [Google Scholar]
  32. Kröger A., Winkler E., Innerhofer A., Hackenberg H., Schagger H. ( 1979). The formate dehydrogenase involved in electron transport from formate to fumarate in Vibrio succinogenes . Eur J Biochem 94:465–475[PubMed] [CrossRef]
    [Google Scholar]
  33. Kröger A., Paulsen J., Schröder I. ( 1986). Phosphorylative electron transport chains lacking a cytochrome bc1 complex. J Bioenerg Biomembr 18:225–234 [View Article][PubMed]
    [Google Scholar]
  34. Laukel M., Chistoserdova L., Lidstrom M. E., Vorholt J. A. ( 2003). The tungsten-containing formate dehydrogenase from Methylobacterium extorquens AM1: purification and properties. Eur J Biochem 270:325–333 [View Article][PubMed]
    [Google Scholar]
  35. Lee S. E., Li Q. X., Yu J. ( 2006). Proteomic examination of Ralstonia eutropha in cellular responses to formic acid. Proteomics 6:4259–4268 [View Article][PubMed]
    [Google Scholar]
  36. Lin E. C., Iuchi S. ( 1991). Regulation of gene expression in fermentative and respiratory systems in Escherichia coli and related bacteria. Annu Rev Genet 25:361–387 [View Article][PubMed]
    [Google Scholar]
  37. Litsanov B., Brocker M., Bott M. ( 2012a). Toward homosuccinate fermentation: metabolic engineering of Corynebacterium glutamicum for anaerobic production of succinate from glucose and formate. Appl Environ Microbiol 78:3325–3337 [View Article][PubMed]
    [Google Scholar]
  38. Litsanov B., Brocker M., Bott M. ( 2012b). Glycerol as a substrate for aerobic succinate production in minimal medium with Corynebacterium glutamicum . Microb Biotechnol [View Article][PubMed]
    [Google Scholar]
  39. Marchler-Bauer A., Lu S., Anderson J. B., Chitsaz F., Derbyshire M. K., DeWeese-Scott C., Fong J. H., Geer L. Y., Geer R. C. & other authors ( 2011). CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res 39:Database issueD225–D229 [View Article][PubMed]
    [Google Scholar]
  40. Marienhagen J., Kennerknecht N., Sahm H., Eggeling L. ( 2005). Functional analysis of all aminotransferase proteins inferred from the genome sequence of Corynebacterium glutamicum . J Bacteriol 187:7639–7646 [View Article][PubMed]
    [Google Scholar]
  41. May H. D., Patel P. S., Ferry J. G. ( 1988). Effect of molybdenum and tungsten on synthesis and composition of formate dehydrogenase in Methanobacterium formicicum . J Bacteriol 170:3384–3389[PubMed]
    [Google Scholar]
  42. McInerney M. J., Sieber J. R., Gunsalus R. P. ( 2009). Syntrophy in anaerobic global carbon cycles. Curr Opin Biotechnol 20:623–632 [View Article][PubMed]
    [Google Scholar]
  43. McMaster J., Enemark J. H. ( 1998). The active sites of molybdenum- and tungsten-containing enzymes. Curr Opin Chem Biol 2:201–207 [View Article][PubMed]
    [Google Scholar]
  44. Misset-Smits M., van Ophem P. W., Sakuda S., Duine J. A. ( 1997). Mycothiol, 1-O-(2′-[N-acetyl-l-cysteinyl]amido-2′-deoxy-alpha-d-glucopyranosyl)-d-myo-inositol, is the factor of NAD/factor-dependent formaldehyde dehydrogenase. FEBS Lett 409:221–222 [View Article][PubMed]
    [Google Scholar]
  45. Moura J. J. G., Brondino C. D., Trincão J., Romão M. J. ( 2004). Mo and W bis-MGD enzymes: nitrate reductases and formate dehydrogenases. J Biol Inorg Chem 9:791–799 [View Article][PubMed]
    [Google Scholar]
  46. Müller U., Willnow P., Ruschig U., Höpner T. ( 1978). Formate dehydrogenase from Pseudomonas oxalaticus . Eur J Biochem 83:485–498 [View Article][PubMed]
    [Google Scholar]
  47. Nagy P. L., Marolewski A., Benkovic S. J., Zalkin H. ( 1995). Formyltetrahydrofolate hydrolase, a regulatory enzyme that functions to balance pools of tetrahydrofolate and one-carbon tetrahydrofolate adducts in Escherichia coli . J Bacteriol 177:1292–1298[PubMed]
    [Google Scholar]
  48. Niebisch A., Bott M. ( 2001). Molecular analysis of the cytochrome bc1-aa3 branch of the Corynebacterium glutamicum respiratory chain containing an unusual diheme cytochrome c1. Arch Microbiol 175:282–294 [View Article][PubMed]
    [Google Scholar]
  49. Niimi S., Suzuki N., Inui M., Yukawa H. ( 2011). Metabolic engineering of 1,2-propanediol pathways in Corynebacterium glutamicum . Appl Microbiol Biotechnol 90:1721–1729 [View Article][PubMed]
    [Google Scholar]
  50. Pecher A., Zinoni F., Jatisatienr C., Wirth R., Hennecke H., Böck A. ( 1983). On the redox control of synthesis of anaerobically induced enzymes in Enterobacteriaceae. Arch Microbiol 136:131–136 [View Article][PubMed]
    [Google Scholar]
  51. Plugge C. M., Zhang W., Scholten J. C. M., Stams A. J. M. ( 2011). Metabolic flexibility of sulfate-reducing bacteria. Front Microbiol 2:81[PubMed] [CrossRef]
    [Google Scholar]
  52. Polen T., Rittmann D., Wendisch V. F., Sahm H. ( 2003). DNA microarray analyses of the long-term adaptive response of Escherichia coli to acetate and propionate. Appl Environ Microbiol 69:1759–1774 [View Article][PubMed]
    [Google Scholar]
  53. Raaijmakers H. C., Romão M. J. ( 2006). Formate-reduced E. coli formate dehydrogenase H: the reinterpretation of the crystal structure suggests a new reaction mechanism. J Biol Inorg Chem 11:849–854 [View Article][PubMed]
    [Google Scholar]
  54. Rittmann D., Lindner S. N., Wendisch V. F. ( 2008). Engineering of a glycerol utilization pathway for amino acid production by Corynebacterium glutamicum . Appl Environ Microbiol 74:6216–6222 [View Article][PubMed]
    [Google Scholar]
  55. Russell J. B. ( 1992). Another explanation for the toxicity of fermentation acids at low pH – anion accumulation versus uncoupling. J Appl Bacteriol 73:363–370 [View Article]
    [Google Scholar]
  56. Sambrook J., Fritsch E. F., Maniatis T. ( 1989). Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  57. Sasaki M., Jojima T., Kawaguchi H., Inui M., Yukawa H. ( 2009). Engineering of pentose transport in Corynebacterium glutamicum to improve simultaneous utilization of mixed sugars. Appl Microbiol Biotechnol 85:105–115 [View Article][PubMed]
    [Google Scholar]
  58. Schäfer A., Tauch A., Jäger W., Kalinowski J., Thierbach G., Pühler A. ( 1994). Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum . Gene 145:69–73 [View Article][PubMed]
    [Google Scholar]
  59. Schaffer S., Weil B., Nguyen V. D., Dongmann G., Günther K., Nickolaus M., Hermann T., Bott M. ( 2001). A high-resolution reference map for cytoplasmic and membrane-associated proteins of Corynebacterium glutamicum . Electrophoresis 22:4404–4422 [View Article][PubMed]
    [Google Scholar]
  60. Schauer N. L., Ferry J. G., Honek J. F., Orme-Johnson W. H., Walsh C. ( 1986). Mechanistic studies of the coenzyme F420 reducing formate dehydrogenase from Methanobacterium formicicum . Biochemistry 25:7163–7168 [View Article][PubMed]
    [Google Scholar]
  61. Schlindwein C., Giordano G., Santini C. L., Mandrand M. A. ( 1990). Identification and expression of the Escherichia coli fdhD and fdhE genes, which are involved in the formation of respiratory formate dehydrogenase. J Bacteriol 172:6112–6121[PubMed]
    [Google Scholar]
  62. Schneider J., Niermann K., Wendisch V. F. ( 2011). Production of the amino acids l-glutamate, l-lysine, l-ornithine and l-arginine from arabinose by recombinant Corynebacterium glutamicum . J Biotechnol 154:191–198 [View Article][PubMed]
    [Google Scholar]
  63. Schneider J., Eberhardt D., Wendisch V. F. ( 2012). Improving putrescine production by Corynebacterium glutamicum by fine-tuning ornithine transcarbamoylase activity using a plasmid addiction system. Appl Microbiol Biotechnol 95:169–178 [View Article][PubMed]
    [Google Scholar]
  64. Schultz C., Niebisch A., Schwaiger A., Viets U., Metzger S., Bramkamp M., Bott M. ( 2009). Genetic and biochemical analysis of the serine/threonine protein kinases PknA, PknB, PknG and PknL of Corynebacterium glutamicum: evidence for non-essentiality and for phosphorylation of OdhI and FtsZ by multiple kinases. Mol Microbiol 74:724–741 [View Article][PubMed]
    [Google Scholar]
  65. Schwarz G., Hagedoorn P. L., Fischer K. ( 2007). Molybdate and tungstate: uptake, homeostasis, cofactors, and enzymes. Molecular Microbiology of Heavy Metals421–452 Nies D. H., Silver S. Berlin, Heidelberg: Springer-Verlag; [View Article]
    [Google Scholar]
  66. Sebban C., Blanchard L., Bruschi M., Guerlesquin F. ( 1995). Purification and characterization of the formate dehydrogenase from Desulfovibrio vulgaris Hildenborough. FEMS Microbiol Lett 133:143–149 [View Article][PubMed]
    [Google Scholar]
  67. Stäbler N., Oikawa T., Bott M., Eggeling L. ( 2011). Corynebacterium glutamicum as a host for synthesis and export of d-amino acids. J Bacteriol 193:1702–1709 [View Article][PubMed]
    [Google Scholar]
  68. Stams A. J., Plugge C. M. ( 2009). Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat Rev Microbiol 7:568–577 [View Article][PubMed]
    [Google Scholar]
  69. Stewart V., Lin J. T., Berg B. L. ( 1991). Genetic evidence that genes fdhD and fdhE do not control synthesis of formate dehydrogenase-N in Escherichia coli K-12. J Bacteriol 173:4417–4423[PubMed]
    [Google Scholar]
  70. Suppmann B., Sawers G. ( 1994). Isolation and characterization of hypophosphite–resistant mutants of Escherichia coli: identification of the FocA protein, encoded by the pfl operon, as a putative formate transporter. Mol Microbiol 11:965–982 [View Article][PubMed]
    [Google Scholar]
  71. Takors R., Bathe B., Rieping M., Hans S., Kelle R., Huthmacher K. ( 2007). Systems biology for industrial strains and fermentation processes – example: amino acids. J Biotechnol 129:181–190 [View Article][PubMed]
    [Google Scholar]
  72. Teramoto H., Suda M., Inui M., Yukawa H. ( 2010). Regulation of the expression of genes involved in NAD de novo biosynthesis in Corynebacterium glutamicum . Appl Environ Microbiol 76:5488–5495 [View Article][PubMed]
    [Google Scholar]
  73. Thomé R., Gust A., Toci R., Mendel R., Bittner F., Magalon A., Walburger A. ( 2012). A sulfurtransferase is essential for activity of formate dehydrogenases in Escherichia coli . J Biol Chem 287:4671–4678 [View Article][PubMed]
    [Google Scholar]
  74. Tishkov V. I., Popov V. O. ( 2004). Catalytic mechanism and application of formate dehydrogenase. Biochemistry (Mosc) 69:1252–1267 [View Article][PubMed]
    [Google Scholar]
  75. van der Rest M. E., Lange C., Molenaar D. ( 1999). A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogeneic plasmid DNA. Appl Microbiol Biotechnol 52:541–545 [View Article][PubMed]
    [Google Scholar]
  76. Wang Y., Huang Y., Wang J., Cheng C., Huang W., Lu P., Xu Y. N., Wang P., Yan N., Shi Y. ( 2009). Structure of the formate transporter FocA reveals a pentameric aquaporin-like channel. Nature 462:467–472 [View Article][PubMed]
    [Google Scholar]
  77. Wendisch V. F., Bott M., Eikmanns B. J. ( 2006a). Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for biotechnological production of organic acids and amino acids. Curr Opin Microbiol 9:268–274 [View Article][PubMed]
    [Google Scholar]
  78. Wendisch V. F., Bott M., Kalinowski J., Oldiges M., Wiechert W. ( 2006b). Emerging Corynebacterium glutamicum systems biology. J Biotechnol 124:74–92 [View Article][PubMed]
    [Google Scholar]
  79. Yagi T. ( 1979). Purification and properties of cytochrome c-553, an electron acceptor for formate dehydrogenase of Desulfovibrio vulgaris, Miyazaki. Biochim Biophys Acta 548:96–105[PubMed] [CrossRef]
    [Google Scholar]
  80. Yamamoto I., Saiki T., Liu S. M., Ljungdahl L. G. ( 1983). Purification and properties of NADP-dependent formate dehydrogenase from Clostridium thermoaceticum, a tungsten-selenium-iron protein. J Biol Chem 258:1826–1832[PubMed]
    [Google Scholar]
  81. Zaldivar J., Ingram L. O. ( 1999). Effect of organic acids on the growth and fermentation of ethanologenic Escherichia coli LY01. Biotechnol Bioeng 66:203–210 [View Article][PubMed]
    [Google Scholar]
  82. Zinoni F., Birkmann A., Leinfelder W., Böck A. ( 1987). Cotranslational insertion of selenocysteine into formate dehydrogenase from Escherichia coli directed by a UGA codon. Proc Natl Acad Sci U S A 84:3156–3160 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.059196-0
Loading
/content/journal/micro/10.1099/mic.0.059196-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error