1887

Abstract

Flagellar biogenesis in the gastric pathogen involves a transcriptional hierarchy that utilizes all three sigma factors found in this bacterium (RpoD, RpoN and FliA). Transcription of the RpoN-dependent genes requires the sensor kinase FlgS and response regulator FlgR. It is thought that FlgS senses some cellular cue to regulate transcription of the RpoN-dependent flagellar genes, but this signal has yet to be identified. Previous studies showed that transcription of the RpoN-dependent genes is inhibited by mutations in , which encodes a membrane-bound component of the flagellar protein export apparatus. We found that depending on the strain used, insertion mutations in had different effects on expression of RpoN-dependent genes. Mutations in in strains B128 and ATCC 43504 (the type strain) were generated by inserting a chloramphenicol resistance cassette so as to effectively eliminate expression of the gene (Δ), or within the gene following codon 77 (designated ) or codon 454 (designated ), which could allow expression of truncated FlhA proteins. All three mutations severely inhibited transcription of the RpoN-dependent genes and in B128. In contrast, levels of and transcripts in ATCC 43504 bearing either or , but not Δ, were ~60 % of wild-type levels. The FlhA variant was detected in membrane fractions prepared from ATCC 43504 but not B128, which may account for the phenotypic differences in the mutations of the two strains. Taken together, these findings suggest that only the N-terminal region of FlhA is needed for transcription of the RpoN regulon. Interestingly, expression of an ′-′ reporter gene in ATCC 43504 bearing the allele was about eightfold higher than that of a strain with the wild-type allele, suggesting that expression of is not only regulated at the level of transcription but also regulated post-transcriptionally.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.059063-0
2013-01-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/1/58.html?itemId=/content/journal/micro/10.1099/mic.0.059063-0&mimeType=html&fmt=ahah

References

  1. Allan E., Dorrell N., Foynes S., Anyim M., Wren B. W. ( 2000). Mutational analysis of genes encoding the early flagellar components of Helicobacter pylori: evidence for transcriptional regulation of flagellin A biosynthesis. J Bacteriol 182:5274–5277 [View Article][PubMed]
    [Google Scholar]
  2. Barker C. S., Meshcheryakova I. V., Kostyukova A. S., Samatey F. A. ( 2010). FliO regulation of FliP in the formation of the Salmonella enterica flagellum. PLoS Genet 6:e1001143 [View Article][PubMed]
    [Google Scholar]
  3. Beier D., Frank R. ( 2000). Molecular characterization of two-component systems of Helicobacter pylori . J Bacteriol 182:2068–2076[PubMed] [CrossRef]
    [Google Scholar]
  4. Blaser M. J. ( 1993). Helicobacter pylori: microbiology of a ‘slow’ bacterial infection. Trends Microbiol 1:255–260 [View Article][PubMed]
    [Google Scholar]
  5. Brahmachary P., Dashti M. G., Olson J. W., Hoover T. R. ( 2004). Helicobacter pylori FlgR is an enhancer-independent activator of σ54-RNA polymerase holoenzyme. J Bacteriol 186:4535–4542 [View Article][PubMed]
    [Google Scholar]
  6. Chevance F. F., Hughes K. T. ( 2008). Coordinating assembly of a bacterial macromolecular machine. Nat Rev Microbiol 6:455–465 [View Article][PubMed]
    [Google Scholar]
  7. Colland F., Rain J.-C., Gounon P., Labigne A., Legrain P., De Reuse H. ( 2001). Identification of the Helicobacter pylori anti-σ28 factor. Mol Microbiol 41:477–487 [View Article][PubMed]
    [Google Scholar]
  8. Cover T. L., Blaser M. J. ( 1992). Helicobacter pylori and gastroduodenal disease. Annu Rev Med 43:135–145 [View Article][PubMed]
    [Google Scholar]
  9. Douillard F. P., Ryan K. A., Caly D. L., Hinds J., Witney A. A., Husain S. E., O’Toole P. W. ( 2008). Posttranscriptional regulation of flagellin synthesis in Helicobacter pylori by the RpoN chaperone HP0958. J Bacteriol 190:7975–7984 [View Article][PubMed]
    [Google Scholar]
  10. Dunn B. E., Cohen H., Blaser M. J. ( 1997). Helicobacter pylori . Clin Microbiol Rev 10:720–741[PubMed]
    [Google Scholar]
  11. Eaton K. A., Morgan D. R., Krakowka S. ( 1989). Campylobacter pylori virulence factors in gnotobiotic piglets. Infect Immun 57:1119–1125[PubMed]
    [Google Scholar]
  12. Eaton K. A., Morgan D. R., Krakowka S. ( 1992). Motility as a factor in the colonisation of gnotobiotic piglets by Helicobacter pylori . J Med Microbiol 37:123–127[PubMed] [CrossRef]
    [Google Scholar]
  13. Foynes S., Dorrell N., Ward S. J., Zhang Z. W., McColm A. A., Farthing M. J. G., Wren B. W. ( 1999). Functional analysis of the roles of FliQ and FlhB in flagellar expression in Helicobacter pylori . FEMS Microbiol Lett 174:33–39 [View Article][PubMed]
    [Google Scholar]
  14. Goodwin C. S., McCulloch R. K., Armstrong J. A., Wee S. H. ( 1985). Unusual cellular fatty acids and distinctive ultrastructure in a new spiral bacterium (Campylobacter pyloridis) from the human gastric mucosa. J Med Microbiol 19:257–267 [View Article][PubMed]
    [Google Scholar]
  15. Hendrixson D. R., DiRita V. J. ( 2003). Transcription of σ54-dependent but not σ28-dependent flagellar genes in Campylobacter jejuni is associated with formation of the flagellar secretory apparatus. Mol Microbiol 50:687–702 [View Article][PubMed]
    [Google Scholar]
  16. Heuermann D., Haas R. ( 1998). A stable shuttle vector system for efficient genetic complementation of Helicobacter pylori strains by transformation and conjugation. Mol Gen Genet 257:519–528[PubMed] [CrossRef]
    [Google Scholar]
  17. Hughes K. T., Gillen K. L., Semon M. J., Karlinsey J. E. ( 1993). Sensing structural intermediates in bacterial flagellar assembly by export of a negative regulator. Science 262:1277–1280 [View Article][PubMed]
    [Google Scholar]
  18. Jenks P. J., Foynes S., Ward S. J., Constantinidou C., Penn C. W., Wren B. W. ( 1997). A flagellar-specific ATPase (FliI) is necessary for flagellar export in Helicobacter pylori . FEMS Microbiol Lett 152:205–211 [View Article][PubMed]
    [Google Scholar]
  19. Josenhans C., Niehus E., Amersbach S., Hörster A., Betz C., Drescher B., Hughes K. T., Suerbaum S. ( 2002). Functional characterization of the antagonistic flagellar late regulators FliA and FlgM of Helicobacter pylori and their effects on the H. pylori transcriptome. Mol Microbiol 43:307–322[PubMed] [CrossRef]
    [Google Scholar]
  20. Joslin S. N., Hendrixson D. R. ( 2009). Activation of the Campylobacter jejuni FlgSR two-component system is linked to the flagellar export apparatus. J Bacteriol 191:2656–2667 [View Article][PubMed]
    [Google Scholar]
  21. Kamal N., Dorrell N., Jagannathan A., Turner S. M., Constantinidou C., Studholme D. J., Marsden G., Hinds J., Laing K. G. & other authors ( 2007). Deletion of a previously uncharacterized flagellar-hook-length control gene fliK modulates the σ54-dependent regulon in Campylobacter jejuni . Microbiology 153:3099–3111 [View Article][PubMed]
    [Google Scholar]
  22. Macnab R. M. ( 1996). Flagella and motility. Escherichia coli and Salmonella: Cellular and Molecular Biology123–145 Neidhardt F. C., Curtiss R. III, Ingraham J. L. et al. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  23. Macnab R. M. ( 2003). How bacteria assemble flagella. Annu Rev Microbiol 57:77–100 [View Article][PubMed]
    [Google Scholar]
  24. McMurry J. L., Van Arnam J. S., Kihara M., Macnab R. M. ( 2004). Analysis of the cytoplasmic domains of Salmonella FlhA and interactions with components of the flagellar export machinery. J Bacteriol 186:7586–7592 [View Article][PubMed]
    [Google Scholar]
  25. Minamino T., Doi H., Kutsukake K. ( 1999). Substrate specificity switching of the flagellum-specific export apparatus during flagellar morphogenesis in Salmonella typhimurium . Biosci Biotechnol Biochem 63:1301–1303 [View Article][PubMed]
    [Google Scholar]
  26. Minamino T., González-Pedrajo B., Kihara M., Namba K., Macnab R. M. ( 2003). The ATPase FliI can interact with the type III flagellar protein export apparatus in the absence of its regulator, FliH. J Bacteriol 185:3983–3988[PubMed] [CrossRef]
    [Google Scholar]
  27. Minamino T., Imada K., Namba K. ( 2008a). Mechanisms of type III protein export for bacterial flagellar assembly. Mol Biosyst 4:1105–1115[PubMed] [CrossRef]
    [Google Scholar]
  28. Minamino T., Imada K., Namba K. ( 2008b). Molecular motors of the bacterial flagella. Curr Opin Struct Biol 18:693–701[PubMed] [CrossRef]
    [Google Scholar]
  29. Niehus E., Gressmann H., Ye F., Schlapbach R., Dehio M., Dehio C., Stack A., Meyer T. F., Suerbaum S., Josenhans C. ( 2004). Genome-wide analysis of transcriptional hierarchy and feedback regulation in the flagellar system of Helicobacter pylori . Mol Microbiol 52:947–961 [View Article][PubMed]
    [Google Scholar]
  30. Pereira L., Hoover T. R. ( 2005). Stable accumulation of σ54 in Helicobacter pylori requires the novel protein HP0958. J Bacteriol 187:4463–4469 [View Article][PubMed]
    [Google Scholar]
  31. Rust M., Borchert S., Niehus E., Kuehne S. A., Gripp E., Bajceta A., McMurry J. L., Suerbaum S., Hughes K. T., Josenhans C. ( 2009). The Helicobacter pylori anti-sigma factor FlgM is predominantly cytoplasmic and cooperates with the flagellar basal body protein FlhA. J Bacteriol 191:4824–4834 [View Article][PubMed]
    [Google Scholar]
  32. Ryan K. A., Karim N., Worku M., Penn C. W., O’Toole P. W. ( 2005). Helicobacter pylori flagellar hook-filament transition is controlled by a FliK functional homolog encoded by the gene HP0906. J Bacteriol 187:5742–5750 [View Article][PubMed]
    [Google Scholar]
  33. Schirm M., Soo E. C., Aubry A. J., Austin J., Thibault P., Logan S. M. ( 2003). Structural, genetic and functional characterization of the flagellin glycosylation process in Helicobacter pylori . Mol Microbiol 48:1579–1592 [View Article][PubMed]
    [Google Scholar]
  34. Schmittgen T. D., Livak K. J. ( 2008). Analyzing real-time PCR data by the comparative C T method. Nat Protoc 3:1101–1108[PubMed] [CrossRef]
    [Google Scholar]
  35. Schmitz A., Josenhans C., Suerbaum S. ( 1997). Cloning and characterization of the Helicobacter pylori flbA gene, which codes for a membrane protein involved in coordinated expression of flagellar genes. J Bacteriol 179:987–997[PubMed]
    [Google Scholar]
  36. Schreiber S., Bücker R., Groll C., Azevedo-Vethacke M., Garten D., Scheid P., Friedrich S., Gatermann S., Josenhans C., Suerbaum S. ( 2005). Rapid loss of motility of Helicobacter pylori in the gastric lumen in vivo. Infect Immun 73:1584–1589[PubMed] [CrossRef]
    [Google Scholar]
  37. Sharma C. M., Hoffmann S., Darfeuille F., Reignier J., Findeiß S., Sittka A., Chabas S., Reiche K., Hackermüller J. & other authors ( 2010). The primary transcriptome of the major human pathogen Helicobacter pylori . Nature 464:250–255[PubMed] [CrossRef]
    [Google Scholar]
  38. Smith T. G., Hoover T. R. ( 2009). Deciphering bacterial flagellar gene regulatory networks in the genomic era. Adv Appl Microbiol 67:257–295 [View Article][PubMed]
    [Google Scholar]
  39. Smith T. G., Pereira L., Hoover T. R. ( 2009). Helicobacter pylori FlhB processing-deficient variants affect flagellar assembly but not flagellar gene expression. Microbiology 155:1170–1180 [View Article][PubMed]
    [Google Scholar]
  40. Spohn G., Scarlato V. ( 1999). Motility of Helicobacter pylori is coordinately regulated by the transcriptional activator FlgR, an NtrC homolog. J Bacteriol 181:593–599[PubMed]
    [Google Scholar]
  41. Wang Y., Taylor D. E. ( 1990). Chloramphenicol resistance in Campylobacter coli: nucleotide sequence, expression, and cloning vector construction. Gene 94:23–28 [View Article][PubMed]
    [Google Scholar]
  42. Williams A. W., Yamaguchi S., Togashi F., Aizawa S. I., Kawagishi I., Macnab R. M. ( 1996). Mutations in fliK and flhB affecting flagellar hook and filament assembly in Salmonella typhimurium . J Bacteriol 178:2960–2970[PubMed]
    [Google Scholar]
  43. Xiao B., Li W., Guo G., Li B., Liu Z., Jia K., Guo Y., Mao X., Zou Q. ( 2009). Identification of small noncoding RNAs in Helicobacter pylori by a bioinformatics-based approach. Curr Microbiol 58:258–263 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.059063-0
Loading
/content/journal/micro/10.1099/mic.0.059063-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error