1887

Abstract

causes whooping cough, an infectious disease that is reemerging despite widespread vaccination. A more complete understanding of pathogenic mechanisms will involve unravelling the regulation of its impressive arsenal of virulence factors. Here we review the action of the response regulator BvgA in the context of what is known about bacterial RNA polymerase and various modes of transcription activation. At most virulence gene promoters, multiple dimers of phosphorylated BvgA (BvgA~P) bind upstream of the core promoter sequence, using a combination of high- and low-affinity sites that fill through cooperativity. Activation by BvgA~P is typically mediated by a novel form of class I/II mechanisms, but two virulence genes, and , which encode serologically distinct fimbrial subunits, are regulated using a previously unrecognized RNA polymerase/activator architecture. In addition, the genes undergo phase variation because of an extended cytosine (C) tract within the promoter sequences that is subject to slipped-strand mispairing during replication. These sophisticated systems of regulation demonstrate one aspect whereby , which is highly clonal and lacks the extensive genetic diversity observed in many other bacterial pathogens, has been highly successful as an obligate human pathogen.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.058941-0
2012-07-01
2020-07-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/7/1665.html?itemId=/content/journal/micro/10.1099/mic.0.058941-0&mimeType=html&fmt=ahah

References

  1. Akerley B. J., Cotter P. A., Miller J. F.. ( 1995;). Ectopic expression of the flagellar regulon alters development of the Bordetella–host interaction. Cell80:611–620 [CrossRef][PubMed]
    [Google Scholar]
  2. Barnard A., Wolfe A., Busby S.. ( 2004;). Regulation at complex bacterial promoters: how bacteria use different promoter organizations to produce different regulatory outcomes. Curr Opin Microbiol7:102–108 [CrossRef][PubMed]
    [Google Scholar]
  3. Baxter K., Lee J., Minakhin L., Severinov K., Hinton D. M.. ( 2006;). Mutational analysis of sigma70 region 4 needed for appropriation by the bacteriophage T4 transcription factors AsiA and MotA. J Mol Biol363:931–944 [CrossRef][PubMed]
    [Google Scholar]
  4. Benoff B., Yang H., Lawson C. L., Parkinson G., Liu J., Blatter E., Ebright Y. W., Berman H. M., Ebright R. H.. ( 2002;). Structural basis of transcription activation: the CAP-alpha CTD-DNA complex. Science297:1562–1566 [CrossRef][PubMed]
    [Google Scholar]
  5. Blanco A. G., Canals A., Bernués J., Solà M., Coll M.. ( 2011;). The structure of a transcription activation subcomplex reveals how σ70 is recruited to PhoB promoters. EMBO J30:3776–3785 [CrossRef][PubMed]
    [Google Scholar]
  6. Bonocora R. P., Caignan G., Woodrell C., Werner M. H., Hinton D. M.. ( 2008;). A basic/hydrophobic cleft of the T4 activator MotA interacts with the C-terminus of E. coli sigma70 to activate middle gene transcription. Mol Microbiol69:331–343 [CrossRef][PubMed]
    [Google Scholar]
  7. Bootsma H. J., Cummings C. A., Relman D. A., Miller J. F.. ( 2002;).National Meeting of the American Society for Microbiology
  8. Bordet J., Gengou O.. ( 1906;). Le microbe de la coqueluche. Ann Inst Pasteur (Paris)20:731–741
    [Google Scholar]
  9. Boucher P. E., Stibitz S.. ( 1995;). Synergistic binding of RNA polymerase and BvgA phosphate to the pertussis toxin promoter of Bordetella pertussis . J Bacteriol177:6486–6491[PubMed]
    [Google Scholar]
  10. Boucher P. E., Menozzi F. D., Locht C.. ( 1994;). The modular architecture of bacterial response regulators. Insights into the activation mechanism of the BvgA transactivator of Bordetella pertussis . J Mol Biol241:363–377 [CrossRef][PubMed]
    [Google Scholar]
  11. Boucher P. E., Murakami K., Ishihama A., Stibitz S.. ( 1997;). Nature of DNA binding and RNA polymerase interaction of the Bordetella pertussis BvgA transcriptional activator at the fha promoter. J Bacteriol179:1755–1763[PubMed]
    [Google Scholar]
  12. Boucher P. E., Yang M. S., Schmidt D. M., Stibitz S.. ( 2001;). Genetic and biochemical analyses of BvgA interaction with the secondary binding region of the fha promoter of Bordetella pertussis . J Bacteriol183:536–544 [CrossRef][PubMed]
    [Google Scholar]
  13. Boucher P. E., Maris A. E., Yang M. S., Stibitz S.. ( 2003;). The response regulator BvgA and RNA polymerase alpha subunit C-terminal domain bind simultaneously to different faces of the same segment of promoter DNA. Mol Cell11:163–173 [CrossRef][PubMed]
    [Google Scholar]
  14. Bouchez V., Caro V., Levillain E., Guigon G., Guiso N.. ( 2008;). Genomic content of Bordetella pertussis clinical isolates circulating in areas of intensive children vaccination. PLoS ONE3:e2437 [CrossRef][PubMed]
    [Google Scholar]
  15. Bouchez V., Brun D., Cantinelli T., Dore G., Njamkepo E., Guiso N.. ( 2009;). First report and detailed characterization of B. pertussis isolates not expressing Pertussis Toxin or Pertactin. Vaccine27:6034–6041 [CrossRef][PubMed]
    [Google Scholar]
  16. Brinig M. M., Cummings C. A., Sanden G. N., Stefanelli P., Lawrence A., Relman D. A.. ( 2006;). Significant gene order and expression differences in Bordetella pertussis despite limited gene content variation. J Bacteriol188:2375–2382 [CrossRef][PubMed]
    [Google Scholar]
  17. Browning D. F., Busby S. J.. ( 2004;). The regulation of bacterial transcription initiation. Nat Rev Microbiol2:57–65 [CrossRef][PubMed]
    [Google Scholar]
  18. Campbell E. A., Muzzin O., Chlenov M., Sun J. L., Olson C. A., Weinman O., Trester-Zedlitz M. L., Darst S. A.. ( 2002;). Structure of the bacterial RNA polymerase promoter specificity sigma subunit. Mol Cell9:527–539 [CrossRef][PubMed]
    [Google Scholar]
  19. Caro V., Hot D., Guigon G., Hubans C., Arrivé M., Soubigou G., Renauld-Mongénie G., Antoine R., Locht C. et al. ( 2006;). Temporal analysis of French Bordetella pertussis isolates by comparative whole-genome hybridization. Microbes Infect8:2228–2235 [CrossRef][PubMed]
    [Google Scholar]
  20. CDC ( 1995;). Pertussis–United States, January 1992–June 1995. MMWR Morb Mortal Wkly Rep44:525–529[PubMed]
    [Google Scholar]
  21. CDC ( 2011;). Pertussis (Whooping Cough)www.cdc.gov/vaccines/pubs/pinkbook/pert.html
    [Google Scholar]
  22. Chen Q., Decker K. B., Boucher P. E., Hinton D., Stibitz S.. ( 2010;). Novel architectural features of Bordetella pertussis fimbrial subunit promoters and their activation by the global virulence regulator BvgA. Mol Microbiol77:1326–1340 [CrossRef][PubMed]
    [Google Scholar]
  23. Cotter P. A., DiRita V. J.. ( 2000;). Bacterial virulence gene regulation: an evolutionary perspective. Annu Rev Microbiol54:519–565 [CrossRef][PubMed]
    [Google Scholar]
  24. Cotter P. A., Jones A. M.. ( 2003;). Phosphorelay control of virulence gene expression in Bordetella . Trends Microbiol11:367–373 [CrossRef][PubMed]
    [Google Scholar]
  25. Cotter P. A., Miller J. F.. ( 1994;). BvgAS-mediated signal transduction: analysis of phase-locked regulatory mutants of Bordetella bronchiseptica in a rabbit model. Infect Immun62:3381–3390[PubMed]
    [Google Scholar]
  26. de Melker H. E., Schellekens J. F. P., Neppelenbroek S. E., Mooi F. R., Rümke H. C., Conyn-van Spaendonck M. A. E.. ( 2000;). Reemergence of pertussis in the highly vaccinated population of the Netherlands: observations on surveillance data. Emerg Infect Dis6:348–357 [CrossRef][PubMed]
    [Google Scholar]
  27. Decker K. B., Chen Q., Hsieh M. L., Boucher P., Stibitz S., Hinton D. M.. ( 2011;). Different requirements for σ Region 4 in BvgA activation of the Bordetella pertussis promoters P(fim3) and P(fhaB). J Mol Biol409:692–709 [CrossRef][PubMed]
    [Google Scholar]
  28. Diavatopoulos D. A., Cummings C. A., Schouls L. M., Brinig M. M., Relman D. A., Mooi F. R.. ( 2005;). Bordetella pertussis, the causative agent of whooping cough, evolved from a distinct, human-associated lineage of B. bronchiseptica . PLoS Pathog1:e45 [CrossRef][PubMed]
    [Google Scholar]
  29. Dorman C. J.. ( 1995;). 1995 Fleming Lecture. DNA topology and the global control of bacterial gene expression: implications for the regulation of virulence gene expression. Microbiology141:1271–1280 [CrossRef][PubMed]
    [Google Scholar]
  30. Dove S. L., Darst S. A., Hochschild A.. ( 2003;). Region 4 of sigma as a target for transcription regulation. Mol Microbiol48:863–874 [CrossRef][PubMed]
    [Google Scholar]
  31. Dybvig K.. ( 1993;). DNA rearrangements and phenotypic switching in prokaryotes. Mol Microbiol10:465–471 [CrossRef][PubMed]
    [Google Scholar]
  32. Galperin M. Y.. ( 2010;). Diversity of structure and function of response regulator output domains. Curr Opin Microbiol13:150–159 [CrossRef][PubMed]
    [Google Scholar]
  33. Gangarosa E. J., Galazka A. M., Wolfe C. R., Phillips L. M., Gangarosa R. E., Miller E., Chen R. T.. ( 1998;). Impact of anti-vaccine movements on pertussis control: the untold story. Lancet351:356–361 [CrossRef][PubMed]
    [Google Scholar]
  34. García San Miguel L., Quereda C., Martínez M., Martín-Dávila P., Cobo J., Guerrero A.. ( 1998;). Bordetella bronchiseptica cavitary pneumonia in a patient with AIDS. Eur J Clin Microbiol Infect Dis17:675–676[PubMed][CrossRef]
    [Google Scholar]
  35. Geier D., Geier M.. ( 2002;). The true story of pertussis vaccination: a sordid legacy?. J Hist Med Allied Sci57:249–284 [CrossRef][PubMed]
    [Google Scholar]
  36. Gerlach G., von Wintzingerode F., Middendorf B., Gross R.. ( 2001;). Evolutionary trends in the genus Bordetella . Microbes Infect3:61–72 [CrossRef][PubMed]
    [Google Scholar]
  37. Geuijen C. A., Willems R. J., Bongaerts M., Top J., Gielen H., Mooi F. R.. ( 1997;). Role of the Bordetella pertussis minor fimbrial subunit, FimD, in colonization of the mouse respiratory tract. Infect Immun65:4222–4228[PubMed]
    [Google Scholar]
  38. Gogol E. B., Cummings C. A., Burns R. C., Relman D. A.. ( 2007;). Phase variation and microevolution at homopolymeric tracts in Bordetella pertussis . BMC Genomics8:122 [CrossRef][PubMed]
    [Google Scholar]
  39. Gourse R. L., Ross W., Gaal T.. ( 2000;). UPs and downs in bacterial transcription initiation: the role of the alpha subunit of RNA polymerase in promoter recognition. Mol Microbiol37:687–695 [CrossRef][PubMed]
    [Google Scholar]
  40. Gries T. J., Kontur W. S., Capp M. W., Saecker R. M., Record M. T. Jr. ( 2010;). One-step DNA melting in the RNA polymerase cleft opens the initiation bubble to form an unstable open complex. Proc Natl Acad Sci U S A107:10418–10423 [CrossRef][PubMed]
    [Google Scholar]
  41. Gruber T. M., Gross C. A.. ( 2003;). Multiple sigma subunits and the partitioning of bacterial transcription space. Annu Rev Microbiol57:441–466 [CrossRef][PubMed]
    [Google Scholar]
  42. Halperin S. A.. ( 2007;). The control of pertussis–2007 and beyond. N Engl J Med356:110–113 [CrossRef][PubMed]
    [Google Scholar]
  43. Heck D. V., Trus B. L., Steven A. C.. ( 1996;). Three-dimensional structure of Bordetella pertussis fimbriae. J Struct Biol116:264–269 [CrossRef][PubMed]
    [Google Scholar]
  44. Heikkinen E., Kallonen T., Saarinen L., Sara R., King A. J., Mooi F. R., Soini J. T., Mertsola J., He Q. S.. ( 2007;). Comparative genomics of Bordetella pertussis reveals progressive gene loss in Finnish strains. PLoS ONE2:e904 [CrossRef][PubMed]
    [Google Scholar]
  45. Heikkinen E., Xing D. K., Olander R. M., Hytönen J., Viljanen M. K., Mertsola J., He Q.. ( 2008;). Bordetella pertussis isolates in Finland: serotype and fimbrial expression. BMC Microbiol8:162 [CrossRef][PubMed]
    [Google Scholar]
  46. Henderson I. R., Owen P., Nataro J. P.. ( 1999;). Molecular switches – the ON and OFF of bacterial phase variation. Mol Microbiol33:919–932 [CrossRef][PubMed]
    [Google Scholar]
  47. Herrou J., Debrie A. S., Willery E., Renauld-Mongénie G., Locht C., Mooi F., Jacob-Dubuisson F., Antoine R.. ( 2009;). Molecular evolution of the two-component system BvgAS involved in virulence regulation in Bordetella . PLoS ONE4:e6996 [CrossRef][PubMed]
    [Google Scholar]
  48. Hinton D. M.. ( 2010;). Transcriptional control in the prereplicative phase of T4 development. Virol J7:289 [CrossRef][PubMed]
    [Google Scholar]
  49. Hobman J. L., Wilkie J., Brown N. L.. ( 2005;). A design for life: prokaryotic metal-binding MerR family regulators. Biometals18:429–436 [CrossRef][PubMed]
    [Google Scholar]
  50. Hook-Barnard I. G., Hinton D. M.. ( 2007;). Transcription initiation by mix and match elements: flexibility for polymerase binding to bacterial promoters. Gene Regul Syst Bio1:275–293[PubMed]
    [Google Scholar]
  51. Jain D., Kim Y., Maxwell K. L., Beasley S., Zhang R., Gussin G. N., Edwards A. M., Darst S. A.. ( 2005;). Crystal structure of bacteriophage lambda cII and its DNA complex. Mol Cell19:259–269 [CrossRef][PubMed]
    [Google Scholar]
  52. Karimova G., Ullmann A.. ( 1997;). Characterization of DNA binding sites for the BvgA protein of Bordetella pertussis . J Bacteriol179:3790–3792[PubMed]
    [Google Scholar]
  53. Karimova G., Bellalou J., Ullmann A.. ( 1996;). Phosphorylation-dependent binding of BvgA to the upstream region of the cyaA gene of Bordetella pertussis . Mol Microbiol20:489–496 [CrossRef][PubMed]
    [Google Scholar]
  54. Kerr J. R., Matthews R. C.. ( 2000;). Bordetella pertussis infection: pathogenesis, diagnosis, management, and the role of protective immunity. Eur J Clin Microbiol Infect Dis19:77–88 [CrossRef][PubMed]
    [Google Scholar]
  55. Kinnear S. M., Boucher P. E., Stibitz S., Carbonetti N. H.. ( 1999;). Analysis of BvgA activation of the pertactin gene promoter in Bordetella pertussis . J Bacteriol181:5234–5241[PubMed]
    [Google Scholar]
  56. Kinnear S. M., Marques R. R., Carbonetti N. H.. ( 2001;). Differential regulation of Bvg-activated virulence factors plays a role in Bordetella pertussis pathogenicity. Infect Immun69:1983–1993 [CrossRef][PubMed]
    [Google Scholar]
  57. Kontur W. S., Saecker R. M., Capp M. W., Record M. T. Jr. ( 2008;). Late steps in the formation of E. coli RNA polymerase-λPR promoter open complexes: characterization of conformational changes by rapid [perturbant] upshift experiments. J Mol Biol376:1034–1047 [CrossRef][PubMed]
    [Google Scholar]
  58. Lacey B. W.. ( 1960;). Antigenic modulation of Bordetella pertussis . J Hyg (Lond)58:57–93 [CrossRef][PubMed]
    [Google Scholar]
  59. Lambert L. J., Wei Y., Schirf V., Demeler B., Werner M. H.. ( 2004;). T4 AsiA blocks DNA recognition by remodeling sigma70 region 4. EMBO J23:2952–2962 [CrossRef][PubMed]
    [Google Scholar]
  60. Lawson C. L., Swigon D., Murakami K. S., Darst S. A., Berman H. M., Ebright R. H.. ( 2004;). Catabolite activator protein: DNA binding and transcription activation. Curr Opin Struct Biol14:10–20 [CrossRef][PubMed]
    [Google Scholar]
  61. Levinson G., Gutman G. A.. ( 1987;). Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol Biol Evol4:203–221[PubMed]
    [Google Scholar]
  62. Locht C., Antoine R., Jacob-Dubuisson F.. ( 2001;). Bordetella pertussis, molecular pathogenesis under multiple aspects. Curr Opin Microbiol4:82–89 [CrossRef][PubMed]
    [Google Scholar]
  63. Marques R. R., Carbonetti N. H.. ( 1997;). Genetic analysis of pertussis toxin promoter activation in Bordetella pertussis . Mol Microbiol24:1215–1224 [CrossRef][PubMed]
    [Google Scholar]
  64. Marteyn B., West N. P., Browning D. F., Cole J. A., Shaw J. G., Palm F., Mounier J., Prévost M. C., Sansonetti P., Tang C. M.. ( 2010;). Modulation of Shigella virulence in response to available oxygen in vivo . Nature465:355–358 [CrossRef][PubMed]
    [Google Scholar]
  65. Mattoo S., Foreman-Wykert A. K., Cotter P. A., Miller J. F.. ( 2001;). Mechanisms of Bordetella pathogenesis . Front Biosci6:e168–e186 [CrossRef][PubMed]
    [Google Scholar]
  66. Merkel T. J., Stibitz S., Keith J. M., Leef M., Shahin R.. ( 1998;). Contribution of regulation by the bvg locus to respiratory infection of mice by Bordetella pertussis . Infect Immun66:4367–4373[PubMed]
    [Google Scholar]
  67. Merkel T. J., Boucher P. E., Stibitz S., Grippe V. K.. ( 2003;). Analysis of bvgR expression in Bordetella pertussis . J Bacteriol185:6902–6912 [CrossRef][PubMed]
    [Google Scholar]
  68. Mooi F. R., van der Heide H. G. J., ter Avest A. R., Welinder K. G., Livey I., van der Zeijst B. A. M., Gaastra W.. ( 1987;). Characterization of fimbrial subunits from Bordetella species. Microb Pathog2:473–484 [CrossRef][PubMed]
    [Google Scholar]
  69. Mooi F. R., Jansen W. H., Brunings H., Gielen H., van der Heide H. G. J., Walvoort H. C., Guinee P. A. M.. ( 1992;). Construction and analysis of Bordetella pertussis mutants defective in the production of fimbriae. Microb Pathog12:127–135 [CrossRef][PubMed]
    [Google Scholar]
  70. Mooi F. R., van Loo I. H. M., van Gent M., He Q., Bart M. J., Heuvelman K. J., de Greeff S. C., Diavatopoulos D., Teunis P. et al. ( 2009;). Bordetella pertussis strains with increased toxin production associated with pertussis resurgence. Emerg Infect Dis15:1206–1213 [CrossRef][PubMed]
    [Google Scholar]
  71. Parkhill J., Sebaihia M., Preston A., Murphy L. D., Thomson N., Harris D. E., Holden M. T., Churcher C. M., Bentley S. D. et al. ( 2003;). Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica . Nat Genet35:32–40 [CrossRef][PubMed]
    [Google Scholar]
  72. Proulx F., Toledano B., Phan V., Clermont M. J., Mariscalco M. M., Seidman E. G.. ( 2002;). Circulating granulocyte colony-stimulating factor, C-X-C, and C-C chemokines in children with Escherichia coli O157:H7 associated hemolytic uremic syndrome. Pediatr Res52:928–934[PubMed][CrossRef]
    [Google Scholar]
  73. Rhen M., Dorman C. J.. ( 2005;). Hierarchical gene regulators adapt Salmonella enterica to its host milieus. Int J Med Microbiol294:487–502 [CrossRef][PubMed]
    [Google Scholar]
  74. Riboli B., Pedroni P., Cuzzoni A., Grandi G., de Ferra F.. ( 1991;). Expression of Bordetella pertussis fimbrial (fim) genes in Bordetella bronchiseptica: fimX is expressed at a low level and vir-regulated. Microb Pathog10:393–403 [CrossRef][PubMed]
    [Google Scholar]
  75. Roy C. R., Falkow S.. ( 1991;). Identification of Bordetella pertussis regulatory sequences required for transcriptional activation of the fhaB gene and autoregulation of the bvgAS operon. J Bacteriol173:2385–2392[PubMed]
    [Google Scholar]
  76. Saecker R. M., Tsodikov O. V., McQuade K. L., Schlax P. E. Jr, Capp M. W., Record M. T. Jr. ( 2002;). Kinetic studies and structural models of the association of E. coli sigma(70) RNA polymerase with the lambdaP(R) promoter: large scale conformational changes in forming the kinetically significant intermediates. J Mol Biol319:649–671 [CrossRef][PubMed]
    [Google Scholar]
  77. Scarlato V., Aricò B., Prugnola A., Rappuoli R.. ( 1991;). Sequential activation and environmental regulation of virulence genes in Bordetella pertussis . EMBO J10:3971–3975[PubMed]
    [Google Scholar]
  78. Seifert H. S., So M.. ( 1988;). Genetic mechanisms of bacterial antigenic variation. Microbiol Rev52:327–336[PubMed]
    [Google Scholar]
  79. Steffen P., Ullmann A.. ( 1998;). Hybrid Bordetella pertussisEscherichia coli RNA polymerases: selectivity of promoter activation. J Bacteriol180:1567–1569[PubMed]
    [Google Scholar]
  80. Steffen P., Goyard S., Ullmann A.. ( 1996;). Phosphorylated BvgA is sufficient for transcriptional activation of virulence-regulated genes in Bordetella pertussis . EMBO J15:102–109[PubMed]
    [Google Scholar]
  81. Stibitz S., Aaronson W., Monack D., Falkow S.. ( 1989;). Phase variation in Bordetella pertussis by frameshift mutation in a gene for a novel two-component system. Nature338:266–269 [CrossRef][PubMed]
    [Google Scholar]
  82. Stock A. M., Robinson V. L., Goudreau P. N.. ( 2000;). Two-component signal transduction. Annu Rev Biochem69:183–215 [CrossRef][PubMed]
    [Google Scholar]
  83. Streisinger G., Owen J.. ( 1985;). Mechanisms of spontaneous and induced frameshift mutation in bacteriophage T4. Genetics109:633–659[PubMed]
    [Google Scholar]
  84. Swanson M. S., Hammer B. K.. ( 2000;). Legionella pneumophila pathogesesis: a fateful journey from amoebae to macrophages. Annu Rev Microbiol54:567–613 [CrossRef][PubMed]
    [Google Scholar]
  85. Tsang R. S. W., Lau A. K. H., Sill M. L., Halperin S. A., Van Caeseele P., Jamieson F., Martin I. E.. ( 2004;). Polymorphisms of the fimbria fim3 gene of Bordetella pertussis strains isolated in Canada. J Clin Microbiol42:5364–5367 [CrossRef][PubMed]
    [Google Scholar]
  86. Uhl M. A., Miller J. F.. ( 1996;). Integration of multiple domains in a two-component sensor protein: the Bordetella pertussis BvgAS phosphorelay. EMBO J15:1028–1036[PubMed]
    [Google Scholar]
  87. van Loo I. H. M., Heuvelman K. J., King A. J., Mooi F. R.. ( 2002;). Multilocus sequence typing of Bordetella pertussis based on surface protein genes. J Clin Microbiol40:1994–2001 [CrossRef][PubMed]
    [Google Scholar]
  88. von Wintzingerode F., Schattke A., Siddiqui R. A., Rösick U., Göbel U. B., Gross R.. ( 2001;). Bordetella petrii sp. nov., isolated from an anaerobic bioreactor, and emended description of the genus Bordetella . Int J Syst Evol Microbiol51:1257–1265[PubMed][CrossRef]
    [Google Scholar]
  89. Watanabe S., Kita A., Kobayashi K., Miki K.. ( 2008;). Crystal structure of the [2Fe-2S] oxidative-stress sensor SoxR bound to DNA. Proc Natl Acad Sci U S A105:4121–4126 [CrossRef][PubMed]
    [Google Scholar]
  90. Willems R., Paul A., van der Heide H. G., ter Avest A. R., Mooi F. R.. ( 1990;). Fimbrial phase variation in Bordetella pertussis: a novel mechanism for transcriptional regulation. EMBO J9:2803–2809[PubMed]
    [Google Scholar]
  91. Williams C. L., Boucher P. E., Stibitz S., Cotter P. A.. ( 2005;). BvgA functions as both an activator and a repressor to control Bvg phase expression of bipA in Bordetella pertussis . Mol Microbiol56:175–188 [CrossRef][PubMed]
    [Google Scholar]
  92. Yang Z. X., Zhou Y. N., Yang Y., Jin D. J.. ( 2010;). Polyphosphate binds to the principal sigma factor of RNA polymerase during starvation response in Helicobacter pylori . Mol Microbiol77:618–627 [CrossRef][PubMed]
    [Google Scholar]
  93. Zu T., Manetti R., Rappuoli R., Scarlato V.. ( 1996;). Differential binding of BvgA to two classes of virulence genes of Bordetella pertussis directs promoter selectivity by RNA polymerase. Mol Microbiol21:557–565 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.058941-0
Loading
/content/journal/micro/10.1099/mic.0.058941-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error