1887

Abstract

The lipolytic enzyme family VIII currently includes only seven members but represents a group of lipolytic enzymes with interesting properties. Recently, we identified a gene encoding the family VIII lipase LipBL from the halophilic bacterium This enzyme, like most lipolytic enzymes from family VIII, possesses two possible nucleophilic serines located in an S-X-X-K β-lactamase motif and a G-X-S-X-G lipase motif. The serine in the S-X-X-K motif is a catalytic residue, but the role of serine within the common lipase consensus sequence G-X-S-X-G has not yet been systematically studied. Here, the previously reported time-intensive procedure for purification of recombinant LipBL was replaced by one-step metal-affinity chromatography purification in the presence of ATP. Heterologous co-expression of His-tagged LipBL with the cytoplasmic molecular chaperones GroEL/GroES was necessary to obtain catalytically active LipBL. Site-directed mutagenesis performed to map the active site of LipBL revealed that mutation of serine and lysine in the β-lactamase motif (S-M-T-K) to alanine abolished the enzyme activity of LipBL, in contrast to mutation of the serine in the lipase consensus motif (S321A). Furthermore, mutagenesis was performed to understand the role of the G-X-S-X-G motif and other amino acids that are conserved among family VIII esterases. We describe how mutations in the conserved G-X-S-X-G motif altered the biochemical properties and substrate specificity of LipBL. Molecular modelling results indicate the location of the G-X-S-X-G motif in a loop close to the catalytic centre of LipBL, presumably representing a substrate-binding site of LipBL.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.058792-0
2012-08-01
2020-08-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/8/2192.html?itemId=/content/journal/micro/10.1099/mic.0.058792-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. ( 1997;). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402[PubMed][CrossRef]
    [Google Scholar]
  2. Arpigny J. L., Jaeger K.-E.. ( 1999;). Bacterial lipolytic enzymes: classification and properties. Biochem J343:177–183 [CrossRef][PubMed]
    [Google Scholar]
  3. Bebrone C., Moali C., Mahy F., Rival S., Docquier J. D., Rossolini G. M., Fastrez J., Pratt R. F., Frère J. M., Galleni M.. ( 2001;). CENTA as a chromogenic substrate for studying β-lactamases. Antimicrob Agents Chemother45:1868–1871 [CrossRef][PubMed]
    [Google Scholar]
  4. Bordo D., Argos P.. ( 1991;). Suggestions for “safe” residue substitutions in site-directed mutagenesis. J Mol Biol217:721–729 [CrossRef][PubMed]
    [Google Scholar]
  5. Bornscheuer U. T.. ( 2002;). Microbial carboxyl esterases: classification, properties and application in biocatalysis. FEMS Microbiol Rev26:73–81 [CrossRef][PubMed]
    [Google Scholar]
  6. Breuer M., Ditrich K., Habicher T., Hauer B., Kesseler M., Stürmer R., Zelinski T.. ( 2004;). Industrial methods for the production of optically active intermediates. Angew Chem Int Ed Engl43:788–824[PubMed][CrossRef]
    [Google Scholar]
  7. Camacho C., Coulouris G., Avagyan V., Ma N., Papadopoulos J., Bealer K., Madden T. L.. ( 2009;). blast+: architecture and applications. BMC Bioinformatics10:421 [CrossRef][PubMed]
    [Google Scholar]
  8. Chahinian H., Ali Y. B., Abousalham A., Petry S., Mandrich L., Manco G., Canaan S., Sarda L.. ( 2005;). Substrate specificity and kinetic properties of enzymes belonging to the hormone-sensitive lipase family: comparison with non-lipolytic and lipolytic carboxylesterases. Biochim Biophys Acta1738:29–36[PubMed][CrossRef]
    [Google Scholar]
  9. DeLano W. L.. ( 2002;). The PyMOL Molecular Graphics System New York: Schrodinger;
    [Google Scholar]
  10. Elend C., Schmeisser C., Leggewie C., Babiak P., Carballeira J. D., Steele H. L., Reymond J. L., Jaeger K.-E., Streit W. R.. ( 2006;). Isolation and biochemical characterization of two novel metagenome-derived esterases. Appl Environ Microbiol72:3637–3645[PubMed][CrossRef]
    [Google Scholar]
  11. Ewalt K. L., Hendrick J. P., Houry W. A., Hartl F. U.. ( 1997;). In vivo observation of polypeptide flux through the bacterial chaperonin system. Cell90:491–500 [CrossRef][PubMed]
    [Google Scholar]
  12. Hartl F. U., Hayer-Hartl M.. ( 2002;). Molecular chaperones in the cytosol: from nascent chain to folded protein. Science295:1852–1858 [CrossRef][PubMed]
    [Google Scholar]
  13. Hasan F., Shah A. A., Hameed A.. ( 2006;). Industrial applications of microbial lipases. Enzyme Microb Technol39:235–251 [CrossRef]
    [Google Scholar]
  14. Hausmann S., Jaeger K.-E.. ( 2010;). Lipolytic enzymes from bacteria. Handbook of Hydrocarbon and Lipid Microbiology1099–1126 Timmis K. N.. Berlin: Springer;[CrossRef]
    [Google Scholar]
  15. Holm C., Davis R. C., Osterlund T., Schotz M. C., Fredrikson G.. ( 1994;). Identification of the active site serine of hormone-sensitive lipase by site-directed mutagenesis. FEBS Lett344:234–238[PubMed][CrossRef]
    [Google Scholar]
  16. Houde A., Kademi A., Leblanc D.. ( 2004;). Lipases and their industrial applications: an overview. Appl Biochem Biotechnol118:155–170[PubMed][CrossRef]
    [Google Scholar]
  17. Huang Y. T., Liaw Y. C., Gorbatyuk V. Y., Huang T. H.. ( 2001;). Backbone dynamics of Escherichia coli thioesterase/protease I: evidence of a flexible active-site environment for a serine protease. J Mol Biol307:1075–1090 [CrossRef][PubMed]
    [Google Scholar]
  18. Jaeger K.-E., Eggert T.. ( 2002;). Lipases for biotechnology. Curr Opin Biotechnol13:390–397 [CrossRef][PubMed]
    [Google Scholar]
  19. Jaeger K.-E., Holliger P.. ( 2010;). Chemical biotechnology – a marriage of convenience and necessity. Curr Opin Biotechnol21:711–712 [CrossRef][PubMed]
    [Google Scholar]
  20. Jaeger K.-E., Reetz M. T.. ( 1998;). Microbial lipases form versatile tools for biotechnology. Trends Biotechnol16:396–403 [CrossRef][PubMed]
    [Google Scholar]
  21. Jeanmougin F., Thompson J. D., Gouy M., Higgins D. G., Gibson T. J.. ( 1998;). Multiple sequence alignment with clustal x . Trends Biochem Sci23:403–405 [CrossRef][PubMed]
    [Google Scholar]
  22. Jeon J. H., Kim S. J., Lee H. S., Cha S. S., Lee J. H., Yoon S. H., Koo B. S., Lee C. M., Choi S. H.. & other authors ( 2011;). Novel metagenome-derived carboxylesterase that hydrolyzes β-lactam antibiotics. Appl Environ Microbiol77:7830–7836 [CrossRef][PubMed]
    [Google Scholar]
  23. Joris B., Ghuysen J. M., Dive G., Renard A., Dideberg O., Charlier P., Frère J. M., Kelly J. A., Boyington J. C.. & other authors ( 1988;). The active-site-serine penicillin-recognizing enzymes as members of the Streptomyces R61 DD-peptidase family. Biochem J250:313–324[PubMed]
    [Google Scholar]
  24. Kelley L. A., Sternberg M. J.. ( 2009;). Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc4:363–371 [CrossRef][PubMed]
    [Google Scholar]
  25. Kelly J. A., Kuzin A. P.. ( 1995;). The refined crystallographic structure of a DD-peptidase penicillin-target enzyme at 1.6 Å resolution. J Mol Biol254:223–236 [CrossRef][PubMed]
    [Google Scholar]
  26. Kim Y. H., Kwon E. J., Kim S. K., Jeong Y. S., Kim J., Yun H. D., Kim H.. ( 2010;). Molecular cloning and characterization of a novel family VIII alkaline esterase from a compost metagenomic library. Biochem Biophys Res Commun393:45–49 [CrossRef][PubMed]
    [Google Scholar]
  27. Knox J. R., Moews P. C., Frere J. M.. ( 1996;). Molecular evolution of bacterial β-lactam resistance. Chem Biol3:937–947 [CrossRef][PubMed]
    [Google Scholar]
  28. Kuzin A. P., Liu H., Kelly J. A., Knox J. R.. ( 1995;). Binding of cephalothin and cefotaxime to d-Ala-d-Ala-peptidase reveals a functional basis of a natural mutation in a low-affinity penicillin-binding protein and in extended-spectrum β-lactamases. Biochemistry34:9532–9540 [CrossRef][PubMed]
    [Google Scholar]
  29. Laane C., Boeren S., Vos K., Veeger C.. ( 1987;). Rules for optimization of biocatalysis in organic solvents. Biotechnol Bioeng30:81–87 [CrossRef][PubMed]
    [Google Scholar]
  30. Laemmli U. K.. ( 1970;). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature227:680–685 [CrossRef][PubMed]
    [Google Scholar]
  31. Leščić Ašler I., Ivić N., Kovačić F., Schell S., Knorr J., Krauss U., Wilhelm S., Kojić-Prodić B., Jaeger K.-E.. ( 2010;). Probing enzyme promiscuity of SGNH hydrolases. ChemBioChem11:2158–2167 [CrossRef][PubMed]
    [Google Scholar]
  32. Lobkovsky E., Moews P. C., Liu H., Zhao H., Frère J. M., Knox J. R.. ( 1993;). Evolution of an enzyme activity: crystallographic structure at 2-Å resolution of cephalosporinase from the ampC gene of Enterobacter cloacae P99 and comparison with a class A penicillinase. Proc Natl Acad Sci U S A90:11257–11261 [CrossRef][PubMed]
    [Google Scholar]
  33. Martín S., Márquez M. C., Sánchez-Porro C., Mellado E., Arahal D. R., Ventosa A.. ( 2003;). Marinobacter lipolyticus sp. nov., a novel moderate halophile with lipolytic activity. Int J Syst Evol Microbiol53:1383–1387[PubMed][CrossRef]
    [Google Scholar]
  34. Mellado E., Martín S., Sánchez-Porro C., Ventosa A.. ( 2005;). Lipolytic enzymes from extremophilic microorganisms. Microorganisms for Industrial Enzymes and Biocontrol25–43 Mellado E., Barredo J. L.. Kerala, India: Research Signpost;
    [Google Scholar]
  35. Mosbah H., Sayari A., Horchani H., Gargouri Y.. ( 2007;). Involvement of Gly 311 residue on substrate discrimination, pH and temperature dependency of recombinant Staphylococcus xylosus lipase: a study with emulsified substrate. Protein Expr Purif55:31–39 [CrossRef][PubMed]
    [Google Scholar]
  36. Narayanan N., Khan M., Chou C. P.. ( 2011;). Enhancing functional expression of heterologous Burkholderia lipase in Escherichia coli . Mol Biotechnol47:130–143 [CrossRef][PubMed]
    [Google Scholar]
  37. Niehaus F., Bertoldo C., Kähler M., Antranikian G.. ( 1999;). Extremophiles as a source of novel enzymes for industrial application. Appl Microbiol Biotechnol51:711–729[PubMed][CrossRef]
    [Google Scholar]
  38. Nishihara K., Kanemori M., Kitagawa M., Yanagi H., Yura T.. ( 1998;). Chaperone coexpression plasmids: differential and synergistic roles of DnaK-DnaJ-GrpE and GroEL-GroES in assisting folding of an allergen of Japanese cedar pollen, Cryj2, in Escherichia coli . Appl Environ Microbiol64:1694–1699[PubMed]
    [Google Scholar]
  39. Nishihara K., Kanemori M., Yanagi H., Yura T.. ( 2000;). Overexpression of trigger factor prevents aggregation of recombinant proteins in Escherichia coli . Appl Environ Microbiol66:884–889 [CrossRef][PubMed]
    [Google Scholar]
  40. Oefner C., D’Arcy A., Daly J. J., Gubernator K., Charnas R. L., Heinze I., Hubschwerlen C., Winkler F. K.. ( 1990;). Refined crystal structure of β-lactamase from Citrobacter freundii indicates a mechanism for β-lactam hydrolysis. Nature343:284–288[PubMed][CrossRef]
    [Google Scholar]
  41. Ogino H., Ishikawa H.. ( 2001;). Enzymes which are stable in the presence of organic solvents. J Biosci Bioeng91:109–116[PubMed][CrossRef]
    [Google Scholar]
  42. Ollis D. L., Cheah E., Cygler M., Dijkstra B. W., Frolow F., Franken S. M., Harel M., Remington S. J., Silman I.. & other authors ( 1992;). The α/β hydrolase fold. Protein Eng5:197–211 [CrossRef][PubMed]
    [Google Scholar]
  43. Park J. H., Ha H. J., Lee W. K., Généreux-Vincent T., Kazlauskas R. J.. ( 2009;). Molecular basis for the stereoselective ammoniolysis of N-alkyl aziridine-2-carboxylates catalyzed by Candida antarctica lipase B. ChemBioChem10:2213–2222[PubMed][CrossRef]
    [Google Scholar]
  44. Pérez D., Ventosa A., Mellado E., Guisán J. M., Fernández-Lorente G., Filice M.. ( 2010;).
  45. Pérez D., Martín S., Fernández-Lorente G., Filice M., Guisán J. M., Ventosa A., García M. T., Mellado E.. ( 2011;). A novel halophilic lipase, LipBL, showing high efficiency in the production of eicosapentaenoic acid (EPA). PLoS ONE6:e23325[PubMed][CrossRef]
    [Google Scholar]
  46. Peters G. H., Svendsen A., Langberg H., Vind J., Patkar S. A., Toxvaerd S., Kinnunen P. K.. ( 1998;). Active serine involved in the stabilization of the active site loop in the Humicola lanuginosa lipase. Biochemistry37:12375–12383[PubMed][CrossRef]
    [Google Scholar]
  47. Petersen E. I., Valinger G., Sölkner B., Stubenrauch G., Schwab H.. ( 2001;). A novel esterase from Burkholderia gladioli which shows high deacetylation activity on cephalosporins is related to β-lactamases and DD-peptidases. J Biotechnol89:11–25[PubMed][CrossRef]
    [Google Scholar]
  48. Rashamuse K., Magomani V., Ronneburg T., Brady D.. ( 2009;). A novel family VIII carboxylesterase derived from a leachate metagenome library exhibits promiscuous β-lactamase activity on nitrocefin. Appl Microbiol Biotechnol83:491–500 [CrossRef][PubMed]
    [Google Scholar]
  49. Rodriguez J. A., Mendoza L. D., Pezzotti F., Vanthuyne N., Leclaire J., Verger R., Buono G., Carriere F., Fotiadu F.. ( 2008;). Novel chromatographic resolution of chiral diacylglycerols and analysis of the stereoselective hydrolysis of triacylglycerols by lipases. Anal Biochem375:196–208 [CrossRef][PubMed]
    [Google Scholar]
  50. Sambrook J., Russell D. W.. ( 2001;). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  51. Sambrook J., Fritsch E. F., Maniatis T.. ( 1989;). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  52. Sayari A., Mosbah H., Gargouri Y.. ( 2007;). Importance of the residue Asp 290 on chain length selectivity and catalytic efficiency of recombinant Staphylococcus simulans lipase expressed in E. coli . Mol Biotechnol36:14–22 [CrossRef][PubMed]
    [Google Scholar]
  53. Schmid A., Dordick J. S., Hauer B., Kiener A., Wubbolts M., Witholt B.. ( 2001;). Industrial biocatalysis today and tomorrow. Nature409:258–268 [CrossRef][PubMed]
    [Google Scholar]
  54. Shuo-Shuo C., Xue-Zheng L., Ji-Hong S.. ( 2011;). Effects of co-expression of molecular chaperones on heterologous soluble expression of the cold-active lipase Lip-948. Protein Expr Purif77:166–172 [CrossRef][PubMed]
    [Google Scholar]
  55. Snellman E. A., Colwell R. R.. ( 2004;). Acinetobacter lipases: molecular biology, biochemical properties and biotechnological potential. J Ind Microbiol Biotechnol31:391–400 [CrossRef][PubMed]
    [Google Scholar]
  56. Snellman E. A., Sullivan E. R., Colwell R. R.. ( 2002;). Purification and properties of the extracellular lipase, LipA, of Acinetobacter sp. RAG-1. Eur J Biochem269:5771–5779 [CrossRef][PubMed]
    [Google Scholar]
  57. Thornton J. M., Orengo C. A., Todd A. E., Pearl F. M.. ( 1999;). Protein folds, functions and evolution. J Mol Biol293:333–342 [CrossRef][PubMed]
    [Google Scholar]
  58. Tiquia S. M., Mormile M. R.. ( 2010;). Extremophiles – a source of innovation for industrial and environmental applications. Environ Technol31:823[PubMed][CrossRef]
    [Google Scholar]
  59. Valinger G., Hermann M., Wagner U. G., Schwab H.. ( 2007;). Stability and activity improvement of cephalosporin esterase EstB from Burkholderia gladioli by directed evolution and structural interpretation of muteins. J Biotechnol129:98–108[PubMed][CrossRef]
    [Google Scholar]
  60. Wagner U. G., Petersen E. I., Schwab H., Kratky C.. ( 2002;). EstB from Burkholderia gladioli: a novel esterase with a β-lactamase fold reveals steric factors to discriminate between esterolytic and β-lactam cleaving activity. Protein Sci11:467–478[PubMed][CrossRef]
    [Google Scholar]
  61. Winkler U. K., Stuckmann M.. ( 1979;). Glycogen, hyaluronate, and some other polysaccharides greatly enhance the formation of exolipase by Serratia marcescens . J Bacteriol138:663–670[PubMed]
    [Google Scholar]
  62. Wu L., Liu B., Hong Y., Sheng D., Shen Y., Ni J.. ( 2010;). Residue Tyr224 is critical for the thermostability of Geobacillus sp. RD-2 lipase. Biotechnol Lett32:107–112 [CrossRef][PubMed]
    [Google Scholar]
  63. Yu E. Y., Kwon M. A., Lee M., Oh J. Y., Choi J. E., Lee J. Y., Song B. K., Hahm D. H., Song J. K.. ( 2011;). Isolation and characterization of cold-active family VIII esterases from an arctic soil metagenome. Appl Microbiol Biotechnol90:573–581 [CrossRef][PubMed]
    [Google Scholar]
  64. Zaccai G.. ( 2004;). The effect of water on protein dynamics. Philos Trans R Soc Lond B Biol Sci359:1269–1275 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.058792-0
Loading
/content/journal/micro/10.1099/mic.0.058792-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error