1887

Abstract

The RecG enzyme, a superfamily 2 helicase, is present in nearly all bacteria. Here we report for the first time that the gene is also present in the genomes of most vascular plants as well as in green algae, but is not found in other eukaryotes or archaea. The precise function of RecG is poorly understood, although ample evidence shows that it plays critical roles in DNA repair, recombination and replication. We further demonstrate that RecG (RecG) DNA binding activity had a broad substrate specificity, whereas it only unwound branched-DNA substrates such as Holliday junctions (HJs), replication forks, D-loops and R-loops, with a strong preference for the HJ as a helicase substrate. In addition, RecG preferentially bound relatively long (≥40 nt) ssDNA, exhibiting a higher affinity for the homopolymeric nucleotides poly(dT), poly(dG) and poly(dC) than for poly(dA). RecG helicase activity was supported by hydrolysis of ATP or dATP in the presence of Mg, Mn, Cu or Fe. Like its orthologue, RecG is also a strictly DNA-dependent ATPase.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.058693-0
2012-08-01
2020-01-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/8/1982.html?itemId=/content/journal/micro/10.1099/mic.0.058693-0&mimeType=html&fmt=ahah

References

  1. Ambur O. H., Davidsen T., Frye S. A., Balasingham S. V., Lagesen K., Rognes T., Tønjum T.. ( 2009;). Genome dynamics in major bacterial pathogens. FEMS Microbiol Rev33:453–470 [CrossRef][PubMed]
    [Google Scholar]
  2. Arabidopsis Genome Initiative ( 2000;). Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature408:796–815 [CrossRef][PubMed]
    [Google Scholar]
  3. Balasingham S. V., Zegeye E. D., Homberset H., Rossi M. L., Laerdahl J. K., Bohr V. A., Tønjum T.. ( 2012;). Enzymatic activities and DNA substrate specificity of Mycobacterium tuberculosis DNA helicase XPB. PLoS ONE7:e36960 [CrossRef][PubMed]
    [Google Scholar]
  4. Biswas T., Pero J. M., Joseph C. G., Tsodikov O. V.. ( 2009;). DNA-dependent ATPase activity of bacterial XPB helicases. Biochemistry48:2839–2848 [CrossRef][PubMed]
    [Google Scholar]
  5. Briggs G. S., Mahdi A. A., Wen Q., Lloyd R. G.. ( 2005;). DNA binding by the substrate specificity (wedge) domain of RecG helicase suggests a role in processivity. J Biol Chem280:13921–13927 [CrossRef][PubMed]
    [Google Scholar]
  6. Brosh R. M. Jr, Opresko P. L., Bohr V. A.. ( 2006;). Enzymatic mechanism of the WRN helicase/nuclease. Methods Enzymol409:52–85 [CrossRef][PubMed]
    [Google Scholar]
  7. Buss J. A., Kimura Y., Bianco P. R.. ( 2008;). RecG interacts directly with SSB: implications for stalled replication fork regression. Nucleic Acids Res36:7029–7042 [CrossRef][PubMed]
    [Google Scholar]
  8. Büttner K., Nehring S., Hopfner K. P.. ( 2007;). Structural basis for DNA duplex separation by a superfamily-2 helicase. Nat Struct Mol Biol14:647–652 [CrossRef][PubMed]
    [Google Scholar]
  9. Cole S. T., Brosch R., Parkhill J., Garnier T., Churcher C., Harris D., Gordon S. V., Eiglmeier K., Gas S.. & other authors ( 1998;). Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature393:537–544 [CrossRef][PubMed]
    [Google Scholar]
  10. Curti E., Smerdon S. J., Davis E. O.. ( 2007;). Characterization of the helicase activity and substrate specificity of Mycobacterium tuberculosis UvrD. J Bacteriol189:1542–1555 [CrossRef][PubMed]
    [Google Scholar]
  11. Davis E. O., Forse L. N.. ( 2009;). DNA repair: key to survival?. Mycobacteria: Genomics and Molecular Biology214 Paris T., Brown A.. Norwich: Caister Academic Press;
    [Google Scholar]
  12. Davis E. O., Springer B., Gopaul K. K., Papavinasasundaram K. G., Sander P., Böttger E. C.. ( 2002;). DNA damage induction of recA in Mycobacterium tuberculosis independently of RecA and LexA. Mol Microbiol46:791–800 [CrossRef][PubMed]
    [Google Scholar]
  13. Della M., Palmbos P. L., Tseng H. M., Tonkin L. M., Daley J. M., Topper L. M., Pitcher R. S., Tomkinson A. E., Wilson T. E., Doherty A. J.. ( 2004;). Mycobacterial Ku and ligase proteins constitute a two-component NHEJ repair machine. Science306:683–685 [CrossRef][PubMed]
    [Google Scholar]
  14. Dos Vultos T., Mestre O., Tønjum T., Gicquel B.. ( 2009;). DNA repair in Mycobacterium tuberculosis revisited. FEMS Microbiol Rev33:471–487 [CrossRef][PubMed]
    [Google Scholar]
  15. Fonville N. C., Blankschien M. D., Magner D. B., Rosenberg S. M.. ( 2010;). RecQ-dependent death-by-recombination in cells lacking RecG and UvrD. DNA Repair (Amst)9:403–413 [CrossRef][PubMed]
    [Google Scholar]
  16. Gorna A. E., Bowater R. P., Dziadek J.. ( 2010;). DNA repair systems and the pathogenesis of Mycobacterium tuberculosis: varying activities at different stages of infection. Clin Sci (Lond)119:187–202 [CrossRef][PubMed]
    [Google Scholar]
  17. Groisman E. A.. ( 1998;). The ins and outs of virulence gene expression: Mg2+ as a regulatory signal. Bioessays20:96–101 [CrossRef][PubMed]
    [Google Scholar]
  18. Guo Y., Bandaru V., Jaruga P., Zhao X., Burrows C. J., Iwai S., Dizdaroglu M., Bond J. P., Wallace S. S.. ( 2010;). The oxidative DNA glycosylases of Mycobacterium tuberculosis exhibit different substrate preferences from their Escherichia coli counterparts. DNA Repair (Amst)9:177–190 [CrossRef][PubMed]
    [Google Scholar]
  19. Inoue H., Hayase Y., Imura A., Iwai S., Miura K., Ohtsuka E.. ( 1987;). Synthesis and hybridization studies on two complementary nona(2′-O-methyl)ribonucleotides. Nucleic Acids Res15:6131–6148 [CrossRef][PubMed]
    [Google Scholar]
  20. Jaillon O., Aury J. M., Noel B., Policriti A., Clepet C., Casagrande A., Choisne N., Aubourg S., Vitulo N.. & other authors ( 2007;). The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature449:463–467 [CrossRef][PubMed]
    [Google Scholar]
  21. Kepple K. V., Boldt J. L., Segall A. M.. ( 2005;). Holliday junction-binding peptides inhibit distinct junction-processing enzymes. Proc Natl Acad Sci U S A102:6867–6872 [CrossRef][PubMed]
    [Google Scholar]
  22. Khanduja J. S., Muniyappa K.. ( 2012;). Functional analysis of DNA replication fork reversal catalyzed by Mycobacterium tuberculosis RuvAB proteins. J Biol Chem287:1345–1360 [CrossRef][PubMed]
    [Google Scholar]
  23. Kim J. L., Morgenstern K. A., Griffith J. P., Dwyer M. D., Thomson J. A., Murcko M. A., Lin C., Caron P. R.. ( 1998;). Hepatitis C virus NS3 RNA helicase domain with a bound oligonucleotide: the crystal structure provides insights into the mode of unwinding. Structure6:89–100 [CrossRef][PubMed]
    [Google Scholar]
  24. Kornberg A., Scott J. F., Bertsch L. L.. ( 1978;). ATP utilization by rep protein in the catalytic separation of DNA strands at a replicating fork. J Biol Chem253:3298–3304[PubMed]
    [Google Scholar]
  25. Kosa J. L., Zdraveski Z. Z., Currier S., Marinus M. G., Essigmann J. M.. ( 2004;). RecN and RecG are required for Escherichia coli survival of bleomycin-induced damage. Mutat Res554:149–157 [CrossRef][PubMed]
    [Google Scholar]
  26. Lecointe F., Sérèna C., Velten M., Costes A., McGovern S., Meile J. C., Errington J., Ehrlich S. D., Noirot P., Polard P.. ( 2007;). Anticipating chromosomal replication fork arrest: SSB targets repair DNA helicases to active forks. EMBO J26:4239–4251 [CrossRef][PubMed]
    [Google Scholar]
  27. Liu Y., West S. C.. ( 2004;). Happy Hollidays: 40th anniversary of the Holliday junction. Nat Rev Mol Cell Biol5:937–944 [CrossRef][PubMed]
    [Google Scholar]
  28. Liu J., Choi M., Stanenas A. G., Byrd A. K., Raney K. D., Cohan C., Bianco P. R.. ( 2011;). Novel, fluorescent, SSB protein chimeras with broad utility. Protein Sci20:1005–1020 [CrossRef][PubMed]
    [Google Scholar]
  29. Lloyd R. G., Sharples G. J.. ( 1993;). Dissociation of synthetic Holliday junctions by E. coli RecG protein. EMBO J12:17–22[PubMed]
    [Google Scholar]
  30. Mahdi A. A., Briggs G. S., Sharples G. J., Wen Q., Lloyd R. G.. ( 2003;). A model for dsDNA translocation revealed by a structural motif common to RecG and Mfd proteins. EMBO J22:724–734 [CrossRef][PubMed]
    [Google Scholar]
  31. Masai H., Tanaka T., Kohda D.. ( 2010;). Stalled replication forks: making ends meet for recognition and stabilization. Bioessays32:687–697 [CrossRef][PubMed]
    [Google Scholar]
  32. McGlynn P., Lloyd R. G.. ( 2000;). Modulation of RNA polymerase by (p)ppGpp reveals a RecG-dependent mechanism for replication fork progression. Cell101:35–45 [CrossRef][PubMed]
    [Google Scholar]
  33. McGlynn P., Lloyd R. G.. ( 2001;). Rescue of stalled replication forks by RecG: simultaneous translocation on the leading and lagging strand templates supports an active DNA unwinding model of fork reversal and Holliday junction formation. Proc Natl Acad Sci U S A98:8227–8234 [CrossRef][PubMed]
    [Google Scholar]
  34. McGlynn P., Lloyd R. G.. ( 2002;). Genome stability and the processing of damaged replication forks by RecG. Trends Genet18:413–419 [CrossRef][PubMed]
    [Google Scholar]
  35. McGlynn P., Al-Deib A. A., Liu J., Marians K. J., Lloyd R. G.. ( 1997;). The DNA replication protein PriA and the recombination protein RecG bind D-loops. J Mol Biol270:212–221 [CrossRef][PubMed]
    [Google Scholar]
  36. McGlynn P., Lloyd R. G., Marians K. J.. ( 2001;). Formation of Holliday junctions by regression of nascent DNA in intermediates containing stalled replication forks: RecG stimulates regression even when the DNA is negatively supercoiled. Proc Natl Acad Sci U S A98:8235–8240 [CrossRef][PubMed]
    [Google Scholar]
  37. Mirkin E. V., Mirkin S. M.. ( 2007;). Replication fork stalling at natural impediments. Microbiol Mol Biol Rev71:13–35 [CrossRef][PubMed]
    [Google Scholar]
  38. Mizrahi V., Andersen S. J.. ( 1998;). DNA repair in Mycobacterium tuberculosis. What have we learnt from the genome sequence?. Mol Microbiol29:1331–1339 [CrossRef][PubMed]
    [Google Scholar]
  39. Müller B., West S. C.. ( 1994;). Processing of Holliday junctions by the Escherichia coli RuvA, RuvB, RuvC and RecG proteins. Experientia50:216–222 [CrossRef][PubMed]
    [Google Scholar]
  40. Niga T., Yoshida H., Hattori H., Nakamura S., Ito H.. ( 1997;). Cloning and sequencing of a novel gene (recG) that affects the quinolone susceptibility of Staphylococcus aureus. Antimicrob Agents Chemother41:1770–1774[PubMed]
    [Google Scholar]
  41. Ochsner U. A., Vasil M. L., Alsabbagh E., Parvatiyar K., Hassett D. J.. ( 2000;). Role of the Pseudomonas aeruginosa oxyR-recG operon in oxidative stress defense and DNA repair: OxyR-dependent regulation of katB-ankB, ahpB, and ahpC-ahpF. J Bacteriol182:4533–4544 [CrossRef][PubMed]
    [Google Scholar]
  42. Pyle A. M.. ( 2008;). Translocation and unwinding mechanisms of RNA and DNA helicases. Annu Rev Biophys37:317–336 [CrossRef][PubMed]
    [Google Scholar]
  43. Qiagen ( 2003;). The QIA Expressionist: a Handbook for High-Level Expression and Purification of 6× His-Tagged Proteins Valencia, CA: Qiagen;
    [Google Scholar]
  44. Rachman H., Strong M., Ulrichs T., Grode L., Schuchhardt J., Mollenkopf H., Kosmiadi G. A., Eisenberg D., Kaufmann S. H.. ( 2006;). Unique transcriptome signature of Mycobacterium tuberculosis in pulmonary tuberculosis. Infect Immun74:1233–1242 [CrossRef][PubMed]
    [Google Scholar]
  45. Rocak S., Linder P.. ( 2004;). DEAD-box proteins: the driving forces behind RNA metabolism. Nat Rev Mol Cell Biol5:232–241 [CrossRef][PubMed]
    [Google Scholar]
  46. Rocha E. P., Cornet E., Michel B.. ( 2005;). Comparative and evolutionary analysis of the bacterial homologous recombination systems. PLoS Genet1:e15 [CrossRef][PubMed]
    [Google Scholar]
  47. Rudolph C. J., Upton A. L., Harris L., Lloyd R. G.. ( 2009a;). Pathological replication in cells lacking RecG DNA translocase. Mol Microbiol73:352–366 [CrossRef][PubMed]
    [Google Scholar]
  48. Rudolph C. J., Upton A. L., Lloyd R. G.. ( 2009b;). Replication fork collisions cause pathological chromosomal amplification in cells lacking RecG DNA translocase. Mol Microbiol74:940–955 [CrossRef][PubMed]
    [Google Scholar]
  49. Rudolph C. J., Mahdi A. A., Upton A. L., Lloyd R. G.. ( 2010a;). RecG protein and single-strand DNA exonucleases avoid cell lethality associated with PriA helicase activity in Escherichia coli. Genetics186:473–492 [CrossRef][PubMed]
    [Google Scholar]
  50. Rudolph C. J., Upton A. L., Briggs G. S., Lloyd R. G.. ( 2010b;). Is RecG a general guardian of the bacterial genome?. DNA Repair (Amst)9:210–223 [CrossRef][PubMed]
    [Google Scholar]
  51. Sayers E. W., Barrett T., Benson D. A., Bolton E., Bryant S. H., Canese K., Chetvernin V., Church D. M., Dicuccio M.. & other authors ( 2012;). Database resources of the National Center for Biotechnology Information. Nucleic Acids Res40:Database issueD13–D25 [CrossRef][PubMed]
    [Google Scholar]
  52. Schnappinger D., Ehrt S., Voskuil M. I., Liu Y., Mangan J. A., Monahan I. M., Dolganov G., Efron B., Butcher P. D.. & other authors ( 2003;). Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment. J Exp Med198:693–704 [CrossRef][PubMed]
    [Google Scholar]
  53. Sharples G. J., Ingleston S. M., Lloyd R. G.. ( 1999;). Holliday junction processing in bacteria: insights from the evolutionary conservation of RuvABC, RecG, and RusA. J Bacteriol181:5543–5550[PubMed]
    [Google Scholar]
  54. Singleton M. R., Scaife S., Wigley D. B.. ( 2001;). Structural analysis of DNA replication fork reversal by RecG. Cell107:79–89 [CrossRef][PubMed]
    [Google Scholar]
  55. Slocum S. L., Buss J. A., Kimura Y., Bianco P. R.. ( 2007;). Characterization of the ATPase activity of the Escherichia coli RecG protein reveals that the preferred cofactor is negatively supercoiled DNA. J Mol Biol367:647–664 [CrossRef][PubMed]
    [Google Scholar]
  56. Stallings C. L., Glickman M. S.. ( 2010;). Is Mycobacterium tuberculosis stressed out? A critical assessment of the genetic evidence. Microbes Infect12:1091–1101 [CrossRef][PubMed]
    [Google Scholar]
  57. Sun Y. H., Exley R., Li Y., Goulding D., Tang C.. ( 2005;). Identification and characterization of genes required for competence in Neisseria meningitidis. J Bacteriol187:3273–3276 [CrossRef][PubMed]
    [Google Scholar]
  58. Tamae C., Liu A., Kim K., Sitz D., Hong J., Becket E., Bui A., Solaimani P., Tran K. P.. & other authors ( 2008;). Determination of antibiotic hypersensitivity among 4,000 single-gene-knockout mutants of Escherichia coli. J Bacteriol190:5981–5988 [CrossRef][PubMed]
    [Google Scholar]
  59. Tanner N. K., Linder P.. ( 2001;). DExD/H box RNA helicases: from generic motors to specific dissociation functions. Mol Cell8:251–262 [CrossRef][PubMed]
    [Google Scholar]
  60. Taylor S. D., Solem A., Kawaoka J., Pyle A. M.. ( 2010;). The NPH-II helicase displays efficient DNA RNA helicase activity and a pronounced purine sequence bias. J Biol Chem285:11692–11703 [CrossRef][PubMed]
    [Google Scholar]
  61. Tuteja N., Tuteja R.. ( 2004;). Unraveling DNA helicases. Motif, structure, mechanism and function. Eur J Biochem271:1849–1863 [CrossRef][PubMed]
    [Google Scholar]
  62. Vincent S. D., Mahdi A. A., Lloyd R. G.. ( 1996;). The RecG branch migration protein of Escherichia coli dissociates R-loops. J Mol Biol264:713–721 [CrossRef][PubMed]
    [Google Scholar]
  63. Vissa V. D., Brennan P. J.. ( 2001;). The genome of Mycobacterium leprae: a minimal mycobacterial gene set. Genome Biol2:REVIEWS1023 [CrossRef][PubMed]
    [Google Scholar]
  64. Warner D. F.. ( 2010;). The role of DNA repair in M. tuberculosis pathogenesis. Drug Discov Today Dis Mech7:e5–e7 [CrossRef]
    [Google Scholar]
  65. Warner D. F., Mizrahi V.. ( 2006;). Tuberculosis chemotherapy: the influence of bacillary stress and damage response pathways on drug efficacy. Clin Microbiol Rev19:558–570 [CrossRef][PubMed]
    [Google Scholar]
  66. Whitby M. C., Lloyd R. G.. ( 1998;). Targeting Holliday junctions by the RecG branch migration protein of Escherichia coli. J Biol Chem273:19729–19739 [CrossRef][PubMed]
    [Google Scholar]
  67. Whitby M. C., Vincent S. D., Lloyd R. G.. ( 1994;). Branch migration of Holliday junctions: identification of RecG protein as a junction specific DNA helicase. EMBO J13:5220–5228[PubMed]
    [Google Scholar]
  68. ).
  69. Wu Y., Chen W., Zhao Y., Xu H., Hua Y.. ( 2009;). Involvement of RecG in H2O2-induced damage repair in Deinococcus radiodurans. Can J Microbiol55:841–848 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.058693-0
Loading
/content/journal/micro/10.1099/mic.0.058693-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error