1887

Abstract

The RecG enzyme, a superfamily 2 helicase, is present in nearly all bacteria. Here we report for the first time that the gene is also present in the genomes of most vascular plants as well as in green algae, but is not found in other eukaryotes or archaea. The precise function of RecG is poorly understood, although ample evidence shows that it plays critical roles in DNA repair, recombination and replication. We further demonstrate that RecG (RecG) DNA binding activity had a broad substrate specificity, whereas it only unwound branched-DNA substrates such as Holliday junctions (HJs), replication forks, D-loops and R-loops, with a strong preference for the HJ as a helicase substrate. In addition, RecG preferentially bound relatively long (≥40 nt) ssDNA, exhibiting a higher affinity for the homopolymeric nucleotides poly(dT), poly(dG) and poly(dC) than for poly(dA). RecG helicase activity was supported by hydrolysis of ATP or dATP in the presence of Mg, Mn, Cu or Fe. Like its orthologue, RecG is also a strictly DNA-dependent ATPase.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.058693-0
2012-08-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/8/1982.html?itemId=/content/journal/micro/10.1099/mic.0.058693-0&mimeType=html&fmt=ahah

References

  1. Ambur O. H., Davidsen T., Frye S. A., Balasingham S. V., Lagesen K., Rognes T., Tønjum T. ( 2009). Genome dynamics in major bacterial pathogens. FEMS Microbiol Rev 33:453–470 [View Article][PubMed]
    [Google Scholar]
  2. Arabidopsis Genome Initiative ( 2000). Analysis of the genome sequence of the flowering plant Arabidopsis thaliana . Nature 408:796–815 [View Article][PubMed]
    [Google Scholar]
  3. Balasingham S. V., Zegeye E. D., Homberset H., Rossi M. L., Laerdahl J. K., Bohr V. A., Tønjum T. ( 2012). Enzymatic activities and DNA substrate specificity of Mycobacterium tuberculosis DNA helicase XPB. PLoS ONE 7:e36960 [View Article][PubMed]
    [Google Scholar]
  4. Biswas T., Pero J. M., Joseph C. G., Tsodikov O. V. ( 2009). DNA-dependent ATPase activity of bacterial XPB helicases. Biochemistry 48:2839–2848 [View Article][PubMed]
    [Google Scholar]
  5. Briggs G. S., Mahdi A. A., Wen Q., Lloyd R. G. ( 2005). DNA binding by the substrate specificity (wedge) domain of RecG helicase suggests a role in processivity. J Biol Chem 280:13921–13927 [View Article][PubMed]
    [Google Scholar]
  6. Brosh R. M. Jr, Opresko P. L., Bohr V. A. ( 2006). Enzymatic mechanism of the WRN helicase/nuclease. Methods Enzymol 409:52–85 [View Article][PubMed]
    [Google Scholar]
  7. Buss J. A., Kimura Y., Bianco P. R. ( 2008). RecG interacts directly with SSB: implications for stalled replication fork regression. Nucleic Acids Res 36:7029–7042 [View Article][PubMed]
    [Google Scholar]
  8. Büttner K., Nehring S., Hopfner K. P. ( 2007). Structural basis for DNA duplex separation by a superfamily-2 helicase. Nat Struct Mol Biol 14:647–652 [View Article][PubMed]
    [Google Scholar]
  9. Cole S. T., Brosch R., Parkhill J., Garnier T., Churcher C., Harris D., Gordon S. V., Eiglmeier K., Gas S. & other authors ( 1998). Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544 [View Article][PubMed]
    [Google Scholar]
  10. Curti E., Smerdon S. J., Davis E. O. ( 2007). Characterization of the helicase activity and substrate specificity of Mycobacterium tuberculosis UvrD. J Bacteriol 189:1542–1555 [View Article][PubMed]
    [Google Scholar]
  11. Davis E. O., Forse L. N. ( 2009). DNA repair: key to survival?. Mycobacteria: Genomics and Molecular Biology214 Paris T., Brown A. Norwich: Caister Academic Press;
    [Google Scholar]
  12. Davis E. O., Springer B., Gopaul K. K., Papavinasasundaram K. G., Sander P., Böttger E. C. ( 2002). DNA damage induction of recA in Mycobacterium tuberculosis independently of RecA and LexA. Mol Microbiol 46:791–800 [View Article][PubMed]
    [Google Scholar]
  13. Della M., Palmbos P. L., Tseng H. M., Tonkin L. M., Daley J. M., Topper L. M., Pitcher R. S., Tomkinson A. E., Wilson T. E., Doherty A. J. ( 2004). Mycobacterial Ku and ligase proteins constitute a two-component NHEJ repair machine. Science 306:683–685 [View Article][PubMed]
    [Google Scholar]
  14. Dos Vultos T., Mestre O., Tønjum T., Gicquel B. ( 2009). DNA repair in Mycobacterium tuberculosis revisited. FEMS Microbiol Rev 33:471–487 [View Article][PubMed]
    [Google Scholar]
  15. Fonville N. C., Blankschien M. D., Magner D. B., Rosenberg S. M. ( 2010). RecQ-dependent death-by-recombination in cells lacking RecG and UvrD. DNA Repair (Amst) 9:403–413 [View Article][PubMed]
    [Google Scholar]
  16. Gorna A. E., Bowater R. P., Dziadek J. ( 2010). DNA repair systems and the pathogenesis of Mycobacterium tuberculosis: varying activities at different stages of infection. Clin Sci (Lond) 119:187–202 [View Article][PubMed]
    [Google Scholar]
  17. Groisman E. A. ( 1998). The ins and outs of virulence gene expression: Mg2+ as a regulatory signal. Bioessays 20:96–101 [View Article][PubMed]
    [Google Scholar]
  18. Guo Y., Bandaru V., Jaruga P., Zhao X., Burrows C. J., Iwai S., Dizdaroglu M., Bond J. P., Wallace S. S. ( 2010). The oxidative DNA glycosylases of Mycobacterium tuberculosis exhibit different substrate preferences from their Escherichia coli counterparts. DNA Repair (Amst) 9:177–190 [View Article][PubMed]
    [Google Scholar]
  19. Inoue H., Hayase Y., Imura A., Iwai S., Miura K., Ohtsuka E. ( 1987). Synthesis and hybridization studies on two complementary nona(2′-O-methyl)ribonucleotides. Nucleic Acids Res 15:6131–6148 [View Article][PubMed]
    [Google Scholar]
  20. Jaillon O., Aury J. M., Noel B., Policriti A., Clepet C., Casagrande A., Choisne N., Aubourg S., Vitulo N. & other authors ( 2007). The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467 [View Article][PubMed]
    [Google Scholar]
  21. Kepple K. V., Boldt J. L., Segall A. M. ( 2005). Holliday junction-binding peptides inhibit distinct junction-processing enzymes. Proc Natl Acad Sci U S A 102:6867–6872 [View Article][PubMed]
    [Google Scholar]
  22. Khanduja J. S., Muniyappa K. ( 2012). Functional analysis of DNA replication fork reversal catalyzed by Mycobacterium tuberculosis RuvAB proteins. J Biol Chem 287:1345–1360 [View Article][PubMed]
    [Google Scholar]
  23. Kim J. L., Morgenstern K. A., Griffith J. P., Dwyer M. D., Thomson J. A., Murcko M. A., Lin C., Caron P. R. ( 1998). Hepatitis C virus NS3 RNA helicase domain with a bound oligonucleotide: the crystal structure provides insights into the mode of unwinding. Structure 6:89–100 [View Article][PubMed]
    [Google Scholar]
  24. Kornberg A., Scott J. F., Bertsch L. L. ( 1978). ATP utilization by rep protein in the catalytic separation of DNA strands at a replicating fork. J Biol Chem 253:3298–3304[PubMed]
    [Google Scholar]
  25. Kosa J. L., Zdraveski Z. Z., Currier S., Marinus M. G., Essigmann J. M. ( 2004). RecN and RecG are required for Escherichia coli survival of bleomycin-induced damage. Mutat Res 554:149–157 [View Article][PubMed]
    [Google Scholar]
  26. Lecointe F., Sérèna C., Velten M., Costes A., McGovern S., Meile J. C., Errington J., Ehrlich S. D., Noirot P., Polard P. ( 2007). Anticipating chromosomal replication fork arrest: SSB targets repair DNA helicases to active forks. EMBO J 26:4239–4251 [View Article][PubMed]
    [Google Scholar]
  27. Liu Y., West S. C. ( 2004). Happy Hollidays: 40th anniversary of the Holliday junction. Nat Rev Mol Cell Biol 5:937–944 [View Article][PubMed]
    [Google Scholar]
  28. Liu J., Choi M., Stanenas A. G., Byrd A. K., Raney K. D., Cohan C., Bianco P. R. ( 2011). Novel, fluorescent, SSB protein chimeras with broad utility. Protein Sci 20:1005–1020 [View Article][PubMed]
    [Google Scholar]
  29. Lloyd R. G., Sharples G. J. ( 1993). Dissociation of synthetic Holliday junctions by E. coli RecG protein. EMBO J 12:17–22[PubMed]
    [Google Scholar]
  30. Mahdi A. A., Briggs G. S., Sharples G. J., Wen Q., Lloyd R. G. ( 2003). A model for dsDNA translocation revealed by a structural motif common to RecG and Mfd proteins. EMBO J 22:724–734 [View Article][PubMed]
    [Google Scholar]
  31. Masai H., Tanaka T., Kohda D. ( 2010). Stalled replication forks: making ends meet for recognition and stabilization. Bioessays 32:687–697 [View Article][PubMed]
    [Google Scholar]
  32. McGlynn P., Lloyd R. G. ( 2000). Modulation of RNA polymerase by (p)ppGpp reveals a RecG-dependent mechanism for replication fork progression. Cell 101:35–45 [View Article][PubMed]
    [Google Scholar]
  33. McGlynn P., Lloyd R. G. ( 2001). Rescue of stalled replication forks by RecG: simultaneous translocation on the leading and lagging strand templates supports an active DNA unwinding model of fork reversal and Holliday junction formation. Proc Natl Acad Sci U S A 98:8227–8234 [View Article][PubMed]
    [Google Scholar]
  34. McGlynn P., Lloyd R. G. ( 2002). Genome stability and the processing of damaged replication forks by RecG. Trends Genet 18:413–419 [View Article][PubMed]
    [Google Scholar]
  35. McGlynn P., Al-Deib A. A., Liu J., Marians K. J., Lloyd R. G. ( 1997). The DNA replication protein PriA and the recombination protein RecG bind D-loops. J Mol Biol 270:212–221 [View Article][PubMed]
    [Google Scholar]
  36. McGlynn P., Lloyd R. G., Marians K. J. ( 2001). Formation of Holliday junctions by regression of nascent DNA in intermediates containing stalled replication forks: RecG stimulates regression even when the DNA is negatively supercoiled. Proc Natl Acad Sci U S A 98:8235–8240 [View Article][PubMed]
    [Google Scholar]
  37. Mirkin E. V., Mirkin S. M. ( 2007). Replication fork stalling at natural impediments. Microbiol Mol Biol Rev 71:13–35 [View Article][PubMed]
    [Google Scholar]
  38. Mizrahi V., Andersen S. J. ( 1998). DNA repair in Mycobacterium tuberculosis. What have we learnt from the genome sequence?. Mol Microbiol 29:1331–1339 [View Article][PubMed]
    [Google Scholar]
  39. Müller B., West S. C. ( 1994). Processing of Holliday junctions by the Escherichia coli RuvA, RuvB, RuvC and RecG proteins. Experientia 50:216–222 [View Article][PubMed]
    [Google Scholar]
  40. Niga T., Yoshida H., Hattori H., Nakamura S., Ito H. ( 1997). Cloning and sequencing of a novel gene (recG) that affects the quinolone susceptibility of Staphylococcus aureus . Antimicrob Agents Chemother 41:1770–1774[PubMed]
    [Google Scholar]
  41. Ochsner U. A., Vasil M. L., Alsabbagh E., Parvatiyar K., Hassett D. J. ( 2000). Role of the Pseudomonas aeruginosa oxyR-recG operon in oxidative stress defense and DNA repair: OxyR-dependent regulation of katB-ankB, ahpB, and ahpC-ahpF . J Bacteriol 182:4533–4544 [View Article][PubMed]
    [Google Scholar]
  42. Pyle A. M. ( 2008). Translocation and unwinding mechanisms of RNA and DNA helicases. Annu Rev Biophys 37:317–336 [View Article][PubMed]
    [Google Scholar]
  43. Qiagen ( 2003). The QIA Expressionist: a Handbook for High-Level Expression and Purification of 6× His-Tagged Proteins Valencia, CA: Qiagen;
    [Google Scholar]
  44. Rachman H., Strong M., Ulrichs T., Grode L., Schuchhardt J., Mollenkopf H., Kosmiadi G. A., Eisenberg D., Kaufmann S. H. ( 2006). Unique transcriptome signature of Mycobacterium tuberculosis in pulmonary tuberculosis. Infect Immun 74:1233–1242 [View Article][PubMed]
    [Google Scholar]
  45. Rocak S., Linder P. ( 2004). DEAD-box proteins: the driving forces behind RNA metabolism. Nat Rev Mol Cell Biol 5:232–241 [View Article][PubMed]
    [Google Scholar]
  46. Rocha E. P., Cornet E., Michel B. ( 2005). Comparative and evolutionary analysis of the bacterial homologous recombination systems. PLoS Genet 1:e15 [View Article][PubMed]
    [Google Scholar]
  47. Rudolph C. J., Upton A. L., Harris L., Lloyd R. G. ( 2009a). Pathological replication in cells lacking RecG DNA translocase. Mol Microbiol 73:352–366 [View Article][PubMed]
    [Google Scholar]
  48. Rudolph C. J., Upton A. L., Lloyd R. G. ( 2009b). Replication fork collisions cause pathological chromosomal amplification in cells lacking RecG DNA translocase. Mol Microbiol 74:940–955 [View Article][PubMed]
    [Google Scholar]
  49. Rudolph C. J., Mahdi A. A., Upton A. L., Lloyd R. G. ( 2010a). RecG protein and single-strand DNA exonucleases avoid cell lethality associated with PriA helicase activity in Escherichia coli . Genetics 186:473–492 [View Article][PubMed]
    [Google Scholar]
  50. Rudolph C. J., Upton A. L., Briggs G. S., Lloyd R. G. ( 2010b). Is RecG a general guardian of the bacterial genome?. DNA Repair (Amst) 9:210–223 [View Article][PubMed]
    [Google Scholar]
  51. Sayers E. W., Barrett T., Benson D. A., Bolton E., Bryant S. H., Canese K., Chetvernin V., Church D. M., Dicuccio M. & other authors ( 2012). Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 40:Database issueD13–D25 [View Article][PubMed]
    [Google Scholar]
  52. Schnappinger D., Ehrt S., Voskuil M. I., Liu Y., Mangan J. A., Monahan I. M., Dolganov G., Efron B., Butcher P. D. & other authors ( 2003). Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment. J Exp Med 198:693–704 [View Article][PubMed]
    [Google Scholar]
  53. Sharples G. J., Ingleston S. M., Lloyd R. G. ( 1999). Holliday junction processing in bacteria: insights from the evolutionary conservation of RuvABC, RecG, and RusA. J Bacteriol 181:5543–5550[PubMed]
    [Google Scholar]
  54. Singleton M. R., Scaife S., Wigley D. B. ( 2001). Structural analysis of DNA replication fork reversal by RecG. Cell 107:79–89 [View Article][PubMed]
    [Google Scholar]
  55. Slocum S. L., Buss J. A., Kimura Y., Bianco P. R. ( 2007). Characterization of the ATPase activity of the Escherichia coli RecG protein reveals that the preferred cofactor is negatively supercoiled DNA. J Mol Biol 367:647–664 [View Article][PubMed]
    [Google Scholar]
  56. Stallings C. L., Glickman M. S. ( 2010). Is Mycobacterium tuberculosis stressed out? A critical assessment of the genetic evidence. Microbes Infect 12:1091–1101 [View Article][PubMed]
    [Google Scholar]
  57. Sun Y. H., Exley R., Li Y., Goulding D., Tang C. ( 2005). Identification and characterization of genes required for competence in Neisseria meningitidis . J Bacteriol 187:3273–3276 [View Article][PubMed]
    [Google Scholar]
  58. Tamae C., Liu A., Kim K., Sitz D., Hong J., Becket E., Bui A., Solaimani P., Tran K. P. & other authors ( 2008). Determination of antibiotic hypersensitivity among 4,000 single-gene-knockout mutants of Escherichia coli . J Bacteriol 190:5981–5988 [View Article][PubMed]
    [Google Scholar]
  59. Tanner N. K., Linder P. ( 2001). DExD/H box RNA helicases: from generic motors to specific dissociation functions. Mol Cell 8:251–262 [View Article][PubMed]
    [Google Scholar]
  60. Taylor S. D., Solem A., Kawaoka J., Pyle A. M. ( 2010). The NPH-II helicase displays efficient DNA RNA helicase activity and a pronounced purine sequence bias. J Biol Chem 285:11692–11703 [View Article][PubMed]
    [Google Scholar]
  61. Tuteja N., Tuteja R. ( 2004). Unraveling DNA helicases. Motif, structure, mechanism and function. Eur J Biochem 271:1849–1863 [View Article][PubMed]
    [Google Scholar]
  62. Vincent S. D., Mahdi A. A., Lloyd R. G. ( 1996). The RecG branch migration protein of Escherichia coli dissociates R-loops. J Mol Biol 264:713–721 [View Article][PubMed]
    [Google Scholar]
  63. Vissa V. D., Brennan P. J. ( 2001). The genome of Mycobacterium leprae: a minimal mycobacterial gene set. Genome Biol 2:REVIEWS1023 [View Article][PubMed]
    [Google Scholar]
  64. Warner D. F. ( 2010). The role of DNA repair in M. tuberculosis pathogenesis. Drug Discov Today Dis Mech 7:e5–e7 [View Article]
    [Google Scholar]
  65. Warner D. F., Mizrahi V. ( 2006). Tuberculosis chemotherapy: the influence of bacillary stress and damage response pathways on drug efficacy. Clin Microbiol Rev 19:558–570 [View Article][PubMed]
    [Google Scholar]
  66. Whitby M. C., Lloyd R. G. ( 1998). Targeting Holliday junctions by the RecG branch migration protein of Escherichia coli . J Biol Chem 273:19729–19739 [View Article][PubMed]
    [Google Scholar]
  67. Whitby M. C., Vincent S. D., Lloyd R. G. ( 1994). Branch migration of Holliday junctions: identification of RecG protein as a junction specific DNA helicase. EMBO J 13:5220–5228[PubMed]
    [Google Scholar]
  68. ).
  69. Wu Y., Chen W., Zhao Y., Xu H., Hua Y. ( 2009). Involvement of RecG in H2O2-induced damage repair in Deinococcus radiodurans . Can J Microbiol 55:841–848 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.058693-0
Loading
/content/journal/micro/10.1099/mic.0.058693-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error