1887

Abstract

PyeR (PA4354) is a novel member of the ArsR family of transcriptional regulators and modulates biofilm formation in Characterization of this regulator showed that it has negative autoregulatory properties and binds to a palindromic motif conserved among PyeR orthologues. These characteristics are in line with classical ArsR-family regulators, as is the fact that PyeR is part of an operon structure (--). However, PyeR also exhibits some atypical features in comparison with classical members of the ArsR family, as it does not harbour metal-binding motifs and does not appear to be involved in metal perception or resistance. Hence, PyeR belongs to a subgroup of non-classical ArsR-family regulators and is the second ArsR regulator shown to be involved in biofilm formation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.058636-0
2012-10-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/10/2598.html?itemId=/content/journal/micro/10.1099/mic.0.058636-0&mimeType=html&fmt=ahah

References

  1. Arunkumar A. I. , Campanello G. C. , Giedroc D. P. . ( 2009; ). Solution structure of a paradigm ArsR family zinc sensor in the DNA-bound state. . Proc Natl Acad Sci U S A 106:, 18177–18182. [CrossRef] [PubMed]
    [Google Scholar]
  2. Bailey T. L. , Elkan C. . ( 1994; ). Fitting a mixture model by expectation maximization to discover motifs in biopolymers. . Proc Int Conf Intell Syst Mol Biol 2:, 28–36.[PubMed]
    [Google Scholar]
  3. Bailey T. L. , Gribskov M. . ( 1998; ). Combining evidence using p-values: application to sequence homology searches. . Bioinformatics 14:, 48–54. [CrossRef] [PubMed]
    [Google Scholar]
  4. Barbosa R. L. , Benedetti C. E. . ( 2007; ). BigR, a transcriptional repressor from plant-associated bacteria, regulates an operon implicated in biofilm growth. . J Bacteriol 189:, 6185–6194. [CrossRef] [PubMed]
    [Google Scholar]
  5. Breithaupt C. , Kurzbauer R. , Schaller F. , Stintzi A. , Schaller A. , Huber R. , Macheroux P. , Clausen T. . ( 2009; ). Structural basis of substrate specificity of plant 12-oxophytodienoate reductases. . J Mol Biol 392:, 1266–1277. [PubMed] [CrossRef]
    [Google Scholar]
  6. Busenlehner L. S. , Pennella M. A. , Giedroc D. P. . ( 2003; ). The SmtB/ArsR family of metalloregulatory transcriptional repressors: structural insights into prokaryotic metal resistance. . FEMS Microbiol Rev 27:, 131–143. [PubMed] [CrossRef]
    [Google Scholar]
  7. Cai J. , Salmon K. , DuBow M. S. . ( 1998; ). A chromosomal ars operon homologue of Pseudomonas aeruginosa confers increased resistance to arsenic and antimony in Escherichia coli . . Microbiology 144:, 2705–2713. [CrossRef] [PubMed]
    [Google Scholar]
  8. Campbell D. R. , Chapman K. E. , Waldron K. J. , Tottey S. , Kendall S. , Cavallaro G. , Andreini C. , Hinds J. , Stoker N. G. . & other authors ( 2007; ). Mycobacterial cells have dual nickel-cobalt sensors: sequence relationships and metal sites of metal-responsive repressors are not congruent. . J Biol Chem 282:, 32298–32310. [CrossRef] [PubMed]
    [Google Scholar]
  9. Ehira S. , Teramoto H. , Inui M. , Yukawa H. . ( 2010; ). A novel redox-sensing transcriptional regulator CyeR controls expression of an Old Yellow Enzyme family protein in Corynebacterium glutamicum . . Microbiology 156:, 1335–1341. [CrossRef] [PubMed]
    [Google Scholar]
  10. Ellermeier C. D. , Hobbs E. C. , Gonzalez-Pastor J. E. , Losick R. . ( 2006; ). A three-protein signaling pathway governing immunity to a bacterial cannibalism toxin. . Cell 124:, 549–559. [CrossRef] [PubMed]
    [Google Scholar]
  11. Fisher C. L. , Pei G. K. . ( 1997; ). Modification of a PCR-based site-directed mutagenesis method. . Biotechniques 23:, 570–571, 574.[PubMed]
    [Google Scholar]
  12. Gristwood T. , McNeil M. B. , Clulow J. S. , Salmond G. P. , Fineran P. C. . ( 2011; ). PigS and PigP regulate prodigiosin biosynthesis in Serratia via differential control of divergent operons, which include predicted transporters of sulfur-containing molecules. . J Bacteriol 193:, 1076–1085. [CrossRef] [PubMed]
    [Google Scholar]
  13. Gueuné H. , Durand M. J. , Thouand G. , DuBow M. S. . ( 2008; ). The ygaVP genes of Escherichia coli form a tributyltin-inducible operon. . Appl Environ Microbiol 74:, 1954–1958. [CrossRef] [PubMed]
    [Google Scholar]
  14. Guimarães B. G. , Barbosa R. L. , Soprano A. S. , Campos B. M. , de Souza T. A. , Tonoli C. C. , Leme A. F. , Murakami M. T. , Benedetti C. E. . ( 2011; ). Plant pathogenic bacteria utilize biofilm growth-associated repressor (BigR), a novel winged-helix redox switch, to control hydrogen sulfide detoxification under hypoxia. . J Biol Chem 286:, 26148–26157. [PubMed] [CrossRef]
    [Google Scholar]
  15. Hall T. A. . ( 1999; ). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. . Nucleic Acids Symp Ser 41:, 95–98.
    [Google Scholar]
  16. Harvie D. R. , Andreini C. , Cavallaro G. , Meng W. , Connolly B. A. , Yoshida K. , Fujita Y. , Harwood C. R. , Radford D. S. . & other authors ( 2006; ). Predicting metals sensed by ArsR-SmtB repressors: allosteric interference by a non-effector metal. . Mol Microbiol 59:, 1341–1356. [CrossRef] [PubMed]
    [Google Scholar]
  17. Heeb S. , Itoh Y. , Nishijyo T. , Schnider U. , Keel C. , Wade J. , Walsh U. , O’Gara F. , Haas D. . ( 2000; ). Small, stable shuttle vectors based on the minimal pVS1 replicon for use in Gram-negative, plant-associated bacteria. . Mol Plant Microbe Interact 13:, 232–237. [CrossRef] [PubMed]
    [Google Scholar]
  18. Hoang T. T. , Karkhoff-Schweizer R. R. , Kutchma A. J. , Schweizer H. P. . ( 1998; ). A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. . Gene 212:, 77–86. [PubMed] [CrossRef]
    [Google Scholar]
  19. Huckle J. W. , Morby A. P. , Turner J. S. , Robinson N. J. . ( 1993; ). Isolation of a prokaryotic metallothionein locus and analysis of transcriptional control by trace metal ions. . Mol Microbiol 7:, 177–187. [CrossRef] [PubMed]
    [Google Scholar]
  20. Janga S. C. , Pérez-Rueda E. . ( 2009; ). Plasticity of transcriptional machinery in bacteria is increased by the repertoire of regulatory families. . Comput Biol Chem 33:, 261–268. [PubMed] [CrossRef]
    [Google Scholar]
  21. Katoh K. , Toh H. . ( 2008; ). Recent developments in the MAFFT multiple sequence alignment program. . Brief Bioinform 9:, 286–298. [PubMed] [CrossRef]
    [Google Scholar]
  22. Liberati N. T. , Urbach J. M. , Miyata S. , Lee D. G. , Drenkard E. , Wu G. , Villanueva J. , Wei T. , Ausubel F. M. . ( 2006; ). An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. . Proc Natl Acad Sci U S A 103:, 2833–2838. [CrossRef] [PubMed]
    [Google Scholar]
  23. Liu M. , Naka H. , Crosa J. H. . ( 2009; ). HlyU acts as an H-NS antirepressor in the regulation of the RTX toxin gene essential for the virulence of the human pathogen Vibrio vulnificus CMCP6. . Mol Microbiol 72:, 491–505. [CrossRef] [PubMed]
    [Google Scholar]
  24. Mao F. , Dam P. , Chou J. , Olman V. , Xu Y. . ( 2009; ). DOOR: a database for prokaryotic operons. . Nucleic Acids Res 37: (Database issue), D459–D463. [CrossRef] [PubMed]
    [Google Scholar]
  25. Mignot T. , Mock M. , Fouet A. . ( 2003; ). A plasmid-encoded regulator couples the synthesis of toxins and surface structures in Bacillus anthracis . . Mol Microbiol 47:, 917–927. [CrossRef] [PubMed]
    [Google Scholar]
  26. Miller J. H. . ( 1972; ). Experiments in Molecular Genetics. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  27. Osman D. , Cavet J. S. . ( 2010; ). Bacterial metal-sensing proteins exemplified by ArsR-SmtB family repressors. . Nat Prod Rep 27:, 668–680. [CrossRef] [PubMed]
    [Google Scholar]
  28. Pak J. W. , Knoke K. L. , Noguera D. R. , Fox B. G. , Chambliss G. H. . ( 2000; ). Transformation of 2,4,6-trinitrotoluene by purified xenobiotic reductase B from Pseudomonas fluorescens I-C. . Appl Environ Microbiol 66:, 4742–4750. [CrossRef] [PubMed]
    [Google Scholar]
  29. Palma M. , DeLuca D. , Worgall S. , Quadri L. E. . ( 2004; ). Transcriptome analysis of the response of Pseudomonas aeruginosa to hydrogen peroxide. . J Bacteriol 186:, 248–252. [CrossRef] [PubMed]
    [Google Scholar]
  30. Pamp S. J. , Gjermansen M. , Johansen H. K. , Tolker-Nielsen T. . ( 2008; ). Tolerance to the antimicrobial peptide colistin in Pseudomonas aeruginosa biofilms is linked to metabolically active cells, and depends on the pmr and mexAB-oprM genes. . Mol Microbiol 68:, 223–240. [CrossRef] [PubMed]
    [Google Scholar]
  31. Sambrook J. . ( 2001; ). Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  32. San Francisco M. J. , Hope C. L. , Owolabi J. B. , Tisa L. S. , Rosen B. P. . ( 1990; ). Identification of the metalloregulatory element of the plasmid-encoded arsenical resistance operon. . Nucleic Acids Res 18:, 619–624. [CrossRef] [PubMed]
    [Google Scholar]
  33. Shi W. , Dong J. , Scott R. A. , Ksenzenko M. Y. , Rosen B. P. . ( 1996; ). The role of arsenic-thiol interactions in metalloregulation of the ars operon. . J Biol Chem 271:, 9291–9297. [CrossRef] [PubMed]
    [Google Scholar]
  34. Simon R. , Priefer U. , Pühler A. . ( 1983; ). A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. . Biotechnology 1:, 784–791. [CrossRef]
    [Google Scholar]
  35. Spaink H. P. , Okker R. J. H. , Wijffelman C. A. , Pees E. , Lugtenberg B. J. J. . ( 1987; ). Promoters in the nodulation region of the Rhizobium leguminosarum Sym plasmid pRL1J1. . Plant Mol Biol 9:, 27–39. [CrossRef]
    [Google Scholar]
  36. Sriramulu D. D. , Lünsdorf H. , Lam J. S. , Römling U. . ( 2005; ). Microcolony formation: a novel biofilm model of Pseudomonas aeruginosa for the cystic fibrosis lung. . J Med Microbiol 54:, 667–676. [CrossRef] [PubMed]
    [Google Scholar]
  37. Stover C. K. , Pham X. Q. , Erwin A. L. , Mizoguchi S. D. , Warrener P. , Hickey M. J. , Brinkman F. S. , Hufnagle W. O. , Kowalik D. J. . & other authors ( 2000; ). Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. . Nature 406:, 959–964. [CrossRef] [PubMed]
    [Google Scholar]
  38. Summers A. O. . ( 2009; ). Damage control: regulating defenses against toxic metals and metalloids. . Curr Opin Microbiol 12:, 138–144. [CrossRef] [PubMed]
    [Google Scholar]
  39. Szklarczyk D. , Franceschini A. , Kuhn M. , Simonovic M. , Roth A. , Minguez P. , Doerks T. , Stark M. , Muller J. . & other authors ( 2011; ). The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. . Nucleic Acids Res 39: (Database issue), D561–D568. [CrossRef] [PubMed]
    [Google Scholar]
  40. Tian Z. X. , Fargier E. , Mac Aogáin M. , Adams C. , Wang Y. P. , O’Gara F. . ( 2009a; ). Transcriptome profiling defines a novel regulon modulated by the LysR-type transcriptional regulator MexT in Pseudomonas aeruginosa . . Nucleic Acids Res 37:, 7546–7559. [CrossRef] [PubMed]
    [Google Scholar]
  41. Tian Z. X. , Mac Aogáin M. , O’Connor H. F. , Fargier E. , Mooij M. J. , Adams C. , Wang Y. P. , O’Gara F. . ( 2009b; ). MexT modulates virulence determinants in Pseudomonas aeruginosa independent of the MexEF-OprN efflux pump. . Microb Pathog 47:, 237–241. [CrossRef] [PubMed]
    [Google Scholar]
  42. Tremaroli V. , Workentine M. L. , Weljie A. M. , Vogel H. J. , Ceri H. , Viti C. , Tatti E. , Zhang P. , Hynes A. P. . & other authors ( 2009; ). Metabolomic investigation of the bacterial response to a metal challenge. . Appl Environ Microbiol 75:, 719–728. [CrossRef] [PubMed]
    [Google Scholar]
  43. Trotter E. W. , Collinson E. J. , Dawes I. W. , Grant C. M. . ( 2006; ). Old yellow enzymes protect against acrolein toxicity in the yeast Saccharomyces cerevisiae . . Appl Environ Microbiol 72:, 4885–4892. [CrossRef] [PubMed]
    [Google Scholar]
  44. van Dillewijn P. , Wittich R. M. , Caballero A. , Ramos J. L. . ( 2008; ). Subfunctionality of hydride transferases of the old yellow enzyme family of flavoproteins of Pseudomonas putida . . Appl Environ Microbiol 74:, 6703–6708. [CrossRef] [PubMed]
    [Google Scholar]
  45. Verstraeten S. V. , Aimo L. , Oteiza P. I. . ( 2008; ). Aluminium and lead: molecular mechanisms of brain toxicity. . Arch Toxicol 82:, 789–802. [PubMed] [CrossRef]
    [Google Scholar]
  46. Williams R. E. , Bruce N. C. . ( 2002; ). ‘New uses for an Old Enzyme’ – the Old Yellow Enzyme family of flavoenzymes. . Microbiology 148:, 1607–1614.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.058636-0
Loading
/content/journal/micro/10.1099/mic.0.058636-0
Loading

Data & Media loading...

Supplements

Supplementary data 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error