1887

Abstract

PyeR (PA4354) is a novel member of the ArsR family of transcriptional regulators and modulates biofilm formation in Characterization of this regulator showed that it has negative autoregulatory properties and binds to a palindromic motif conserved among PyeR orthologues. These characteristics are in line with classical ArsR-family regulators, as is the fact that PyeR is part of an operon structure (--). However, PyeR also exhibits some atypical features in comparison with classical members of the ArsR family, as it does not harbour metal-binding motifs and does not appear to be involved in metal perception or resistance. Hence, PyeR belongs to a subgroup of non-classical ArsR-family regulators and is the second ArsR regulator shown to be involved in biofilm formation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.058636-0
2012-10-01
2021-08-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/10/2598.html?itemId=/content/journal/micro/10.1099/mic.0.058636-0&mimeType=html&fmt=ahah

References

  1. Arunkumar A. I., Campanello G. C., Giedroc D. P. ( 2009). Solution structure of a paradigm ArsR family zinc sensor in the DNA-bound state. Proc Natl Acad Sci U S A 106:18177–18182 [View Article][PubMed]
    [Google Scholar]
  2. Bailey T. L., Elkan C. ( 1994). Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol 2:28–36[PubMed]
    [Google Scholar]
  3. Bailey T. L., Gribskov M. ( 1998). Combining evidence using p-values: application to sequence homology searches. Bioinformatics 14:48–54 [View Article][PubMed]
    [Google Scholar]
  4. Barbosa R. L., Benedetti C. E. ( 2007). BigR, a transcriptional repressor from plant-associated bacteria, regulates an operon implicated in biofilm growth. J Bacteriol 189:6185–6194 [View Article][PubMed]
    [Google Scholar]
  5. Breithaupt C., Kurzbauer R., Schaller F., Stintzi A., Schaller A., Huber R., Macheroux P., Clausen T. ( 2009). Structural basis of substrate specificity of plant 12-oxophytodienoate reductases. J Mol Biol 392:1266–1277[PubMed] [CrossRef]
    [Google Scholar]
  6. Busenlehner L. S., Pennella M. A., Giedroc D. P. ( 2003). The SmtB/ArsR family of metalloregulatory transcriptional repressors: structural insights into prokaryotic metal resistance. FEMS Microbiol Rev 27:131–143[PubMed] [CrossRef]
    [Google Scholar]
  7. Cai J., Salmon K., DuBow M. S. ( 1998). A chromosomal ars operon homologue of Pseudomonas aeruginosa confers increased resistance to arsenic and antimony in Escherichia coli . Microbiology 144:2705–2713 [View Article][PubMed]
    [Google Scholar]
  8. Campbell D. R., Chapman K. E., Waldron K. J., Tottey S., Kendall S., Cavallaro G., Andreini C., Hinds J., Stoker N. G. & other authors ( 2007). Mycobacterial cells have dual nickel-cobalt sensors: sequence relationships and metal sites of metal-responsive repressors are not congruent. J Biol Chem 282:32298–32310 [View Article][PubMed]
    [Google Scholar]
  9. Ehira S., Teramoto H., Inui M., Yukawa H. ( 2010). A novel redox-sensing transcriptional regulator CyeR controls expression of an Old Yellow Enzyme family protein in Corynebacterium glutamicum . Microbiology 156:1335–1341 [View Article][PubMed]
    [Google Scholar]
  10. Ellermeier C. D., Hobbs E. C., Gonzalez-Pastor J. E., Losick R. ( 2006). A three-protein signaling pathway governing immunity to a bacterial cannibalism toxin. Cell 124:549–559 [View Article][PubMed]
    [Google Scholar]
  11. Fisher C. L., Pei G. K. ( 1997). Modification of a PCR-based site-directed mutagenesis method. Biotechniques 23:570–571, 574[PubMed]
    [Google Scholar]
  12. Gristwood T., McNeil M. B., Clulow J. S., Salmond G. P., Fineran P. C. ( 2011). PigS and PigP regulate prodigiosin biosynthesis in Serratia via differential control of divergent operons, which include predicted transporters of sulfur-containing molecules. J Bacteriol 193:1076–1085 [View Article][PubMed]
    [Google Scholar]
  13. Gueuné H., Durand M. J., Thouand G., DuBow M. S. ( 2008). The ygaVP genes of Escherichia coli form a tributyltin-inducible operon. Appl Environ Microbiol 74:1954–1958 [View Article][PubMed]
    [Google Scholar]
  14. Guimarães B. G., Barbosa R. L., Soprano A. S., Campos B. M., de Souza T. A., Tonoli C. C., Leme A. F., Murakami M. T., Benedetti C. E. ( 2011). Plant pathogenic bacteria utilize biofilm growth-associated repressor (BigR), a novel winged-helix redox switch, to control hydrogen sulfide detoxification under hypoxia. J Biol Chem 286:26148–26157[PubMed] [CrossRef]
    [Google Scholar]
  15. Hall T. A. ( 1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  16. Harvie D. R., Andreini C., Cavallaro G., Meng W., Connolly B. A., Yoshida K., Fujita Y., Harwood C. R., Radford D. S. & other authors ( 2006). Predicting metals sensed by ArsR-SmtB repressors: allosteric interference by a non-effector metal. Mol Microbiol 59:1341–1356 [View Article][PubMed]
    [Google Scholar]
  17. Heeb S., Itoh Y., Nishijyo T., Schnider U., Keel C., Wade J., Walsh U., O’Gara F., Haas D. ( 2000). Small, stable shuttle vectors based on the minimal pVS1 replicon for use in Gram-negative, plant-associated bacteria. Mol Plant Microbe Interact 13:232–237 [View Article][PubMed]
    [Google Scholar]
  18. Hoang T. T., Karkhoff-Schweizer R. R., Kutchma A. J., Schweizer H. P. ( 1998). A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212:77–86[PubMed] [CrossRef]
    [Google Scholar]
  19. Huckle J. W., Morby A. P., Turner J. S., Robinson N. J. ( 1993). Isolation of a prokaryotic metallothionein locus and analysis of transcriptional control by trace metal ions. Mol Microbiol 7:177–187 [View Article][PubMed]
    [Google Scholar]
  20. Janga S. C., Pérez-Rueda E. ( 2009). Plasticity of transcriptional machinery in bacteria is increased by the repertoire of regulatory families. Comput Biol Chem 33:261–268[PubMed] [CrossRef]
    [Google Scholar]
  21. Katoh K., Toh H. ( 2008). Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 9:286–298[PubMed] [CrossRef]
    [Google Scholar]
  22. Liberati N. T., Urbach J. M., Miyata S., Lee D. G., Drenkard E., Wu G., Villanueva J., Wei T., Ausubel F. M. ( 2006). An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc Natl Acad Sci U S A 103:2833–2838 [View Article][PubMed]
    [Google Scholar]
  23. Liu M., Naka H., Crosa J. H. ( 2009). HlyU acts as an H-NS antirepressor in the regulation of the RTX toxin gene essential for the virulence of the human pathogen Vibrio vulnificus CMCP6. Mol Microbiol 72:491–505 [View Article][PubMed]
    [Google Scholar]
  24. Mao F., Dam P., Chou J., Olman V., Xu Y. ( 2009). DOOR: a database for prokaryotic operons. Nucleic Acids Res 37:Database issueD459–D463 [View Article][PubMed]
    [Google Scholar]
  25. Mignot T., Mock M., Fouet A. ( 2003). A plasmid-encoded regulator couples the synthesis of toxins and surface structures in Bacillus anthracis . Mol Microbiol 47:917–927 [View Article][PubMed]
    [Google Scholar]
  26. Miller J. H. ( 1972). Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  27. Osman D., Cavet J. S. ( 2010). Bacterial metal-sensing proteins exemplified by ArsR-SmtB family repressors. Nat Prod Rep 27:668–680 [View Article][PubMed]
    [Google Scholar]
  28. Pak J. W., Knoke K. L., Noguera D. R., Fox B. G., Chambliss G. H. ( 2000). Transformation of 2,4,6-trinitrotoluene by purified xenobiotic reductase B from Pseudomonas fluorescens I-C. Appl Environ Microbiol 66:4742–4750 [View Article][PubMed]
    [Google Scholar]
  29. Palma M., DeLuca D., Worgall S., Quadri L. E. ( 2004). Transcriptome analysis of the response of Pseudomonas aeruginosa to hydrogen peroxide. J Bacteriol 186:248–252 [View Article][PubMed]
    [Google Scholar]
  30. Pamp S. J., Gjermansen M., Johansen H. K., Tolker-Nielsen T. ( 2008). Tolerance to the antimicrobial peptide colistin in Pseudomonas aeruginosa biofilms is linked to metabolically active cells, and depends on the pmr and mexAB-oprM genes. Mol Microbiol 68:223–240 [View Article][PubMed]
    [Google Scholar]
  31. Sambrook J. ( 2001). Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  32. San Francisco M. J., Hope C. L., Owolabi J. B., Tisa L. S., Rosen B. P. ( 1990). Identification of the metalloregulatory element of the plasmid-encoded arsenical resistance operon. Nucleic Acids Res 18:619–624 [View Article][PubMed]
    [Google Scholar]
  33. Shi W., Dong J., Scott R. A., Ksenzenko M. Y., Rosen B. P. ( 1996). The role of arsenic-thiol interactions in metalloregulation of the ars operon. J Biol Chem 271:9291–9297 [View Article][PubMed]
    [Google Scholar]
  34. Simon R., Priefer U., Pühler A. ( 1983). A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Biotechnology 1:784–791 [View Article]
    [Google Scholar]
  35. Spaink H. P., Okker R. J. H., Wijffelman C. A., Pees E., Lugtenberg B. J. J. ( 1987). Promoters in the nodulation region of the Rhizobium leguminosarum Sym plasmid pRL1J1. Plant Mol Biol 9:27–39 [CrossRef]
    [Google Scholar]
  36. Sriramulu D. D., Lünsdorf H., Lam J. S., Römling U. ( 2005). Microcolony formation: a novel biofilm model of Pseudomonas aeruginosa for the cystic fibrosis lung. J Med Microbiol 54:667–676 [View Article][PubMed]
    [Google Scholar]
  37. Stover C. K., Pham X. Q., Erwin A. L., Mizoguchi S. D., Warrener P., Hickey M. J., Brinkman F. S., Hufnagle W. O., Kowalik D. J. & other authors ( 2000). Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406:959–964 [View Article][PubMed]
    [Google Scholar]
  38. Summers A. O. ( 2009). Damage control: regulating defenses against toxic metals and metalloids. Curr Opin Microbiol 12:138–144 [View Article][PubMed]
    [Google Scholar]
  39. Szklarczyk D., Franceschini A., Kuhn M., Simonovic M., Roth A., Minguez P., Doerks T., Stark M., Muller J. & other authors ( 2011). The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 39:Database issueD561–D568 [View Article][PubMed]
    [Google Scholar]
  40. Tian Z. X., Fargier E., Mac Aogáin M., Adams C., Wang Y. P., O’Gara F. ( 2009a). Transcriptome profiling defines a novel regulon modulated by the LysR-type transcriptional regulator MexT in Pseudomonas aeruginosa . Nucleic Acids Res 37:7546–7559 [View Article][PubMed]
    [Google Scholar]
  41. Tian Z. X., Mac Aogáin M., O’Connor H. F., Fargier E., Mooij M. J., Adams C., Wang Y. P., O’Gara F. ( 2009b). MexT modulates virulence determinants in Pseudomonas aeruginosa independent of the MexEF-OprN efflux pump. Microb Pathog 47:237–241 [View Article][PubMed]
    [Google Scholar]
  42. Tremaroli V., Workentine M. L., Weljie A. M., Vogel H. J., Ceri H., Viti C., Tatti E., Zhang P., Hynes A. P. & other authors ( 2009). Metabolomic investigation of the bacterial response to a metal challenge. Appl Environ Microbiol 75:719–728 [View Article][PubMed]
    [Google Scholar]
  43. Trotter E. W., Collinson E. J., Dawes I. W., Grant C. M. ( 2006). Old yellow enzymes protect against acrolein toxicity in the yeast Saccharomyces cerevisiae . Appl Environ Microbiol 72:4885–4892 [View Article][PubMed]
    [Google Scholar]
  44. van Dillewijn P., Wittich R. M., Caballero A., Ramos J. L. ( 2008). Subfunctionality of hydride transferases of the old yellow enzyme family of flavoproteins of Pseudomonas putida . Appl Environ Microbiol 74:6703–6708 [View Article][PubMed]
    [Google Scholar]
  45. Verstraeten S. V., Aimo L., Oteiza P. I. ( 2008). Aluminium and lead: molecular mechanisms of brain toxicity. Arch Toxicol 82:789–802[PubMed] [CrossRef]
    [Google Scholar]
  46. Williams R. E., Bruce N. C. ( 2002). ‘New uses for an Old Enzyme’ – the Old Yellow Enzyme family of flavoenzymes. Microbiology 148:1607–1614[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.058636-0
Loading
/content/journal/micro/10.1099/mic.0.058636-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error