1887

Abstract

, a significant respiratory and reproductive pathogen of domestic poultry, has since 1994 been recognized as an emergent pathogen of the American house finch (). Epizootic spread and pathognomonic characteristics of house finch-associated (HFMG) have been studied as a model of an emergent to endemic pathogen in a novel host. Here we present comparative analysis of eight HFMG genomes, including one from an index isolate and seven isolates separated spatially and temporally (1994–2008) across the epizootic, and notably having differences in virulence. HFMG represented a monophyletic clade relative to sequenced poultry isolates, with genomic changes indicating a novel lineage and including unique deletions of coding sequence. Though most of the HFMG genome was highly conserved among isolates, genetic distances correlated with temporal–spatial distance from the index. The most dramatic genomic differences among HFMG involved phase-variable and immunodominant VlhA lipoprotein genes, including those variable in presence and genomic location. Other genomic differences included tandem copy number variation of a 5 kbp repeat, changes in and adjacent to the clustered regularly interspaced short palindromic repeats, and small-scale changes affecting coding potential and association of genes with virulence. Divergence of monophyletic isolates from similar time/space in the epizootic indicated local diversification of distinct HFMG sublineages. Overall, these data identify candidate virulence genes and reveal the importance of phase-variable lipoproteins during the evolution of during its emergence and dissemination in a novel host in nature, likely mediating an important role at the interface between pathogen virulence and host immunity.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.058560-0
2012-08-01
2020-01-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/8/2073.html?itemId=/content/journal/micro/10.1099/mic.0.058560-0&mimeType=html&fmt=ahah

References

  1. Altizer S., Hochachka W. M., Dhondt A. A.. ( 2004;). Seasonal dynamics of mycoplasmal conjunctivitis in eastern North American house finches. J Anim Ecol73:309–322 [CrossRef]
    [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J.. ( 1990;). Basic local alignment search tool. J Mol Biol215:403–410[PubMed][CrossRef]
    [Google Scholar]
  3. Bearson S. M., Collier S. D., Bearson B. L., Branton S. L.. ( 2003;). Induction of a Mycoplasma gallisepticum pMGA gene in the chicken tracheal ring organ culture model. Avian Dis47:745–749 [CrossRef][PubMed]
    [Google Scholar]
  4. Boisvert S., Laviolette F., Corbeil J.. ( 2010;). Ray: simultaneous assembly of reads from a mix of high-throughput sequencing technologies. J Comput Biol17:1519–1533 [CrossRef][PubMed]
    [Google Scholar]
  5. Cherry J. J., Ley D. H., Altizer S.. ( 2006;). Genotypic analyses of Mycoplasma gallisepticum isolates from songbirds by random amplification of polymorphic DNA and amplified-fragment length polymorphism. J Wildl Dis42:421–428[PubMed][CrossRef]
    [Google Scholar]
  6. Cloward J. M., Krause D. C.. ( 2011;). Loss of co-chaperone TopJ impacts adhesin P1 presentation and terminal organelle maturation in Mycoplasma pneumoniae . Mol Microbiol81:528–539 [CrossRef][PubMed]
    [Google Scholar]
  7. Delaney N. F., Balenger S., Bonneaud C., Marx C. J., Hill G. E., Ferguson-Noel N., Tsai P., Rodrigo A., Edwards S. V.. ( 2012;). Ultrafast evolution and loss of CRISPRs following a host shift in a novel wildlife pathogen, Mycoplasma gallisepticum . PLoS Genet8:e1002511 [CrossRef][PubMed]
    [Google Scholar]
  8. Dhondt A. A., Tessaglia D. L., Slothower R. L.. ( 1998;). Epidemic mycoplasmal conjunctivitis in house finches from eastern North America. J Wildl Dis34:265–280[PubMed][CrossRef]
    [Google Scholar]
  9. Dhondt A. A., Badyaev A. V., Dobson A. P., Hawley D. M., Driscoll M. J. L., Hochachka W. M., Ley D. H.. ( 2006;). Dynamics of mycoplasmal conjunctivitis in the native and introduced range of the host. EcoHealth3:95–102 [CrossRef]
    [Google Scholar]
  10. Drummond A. J., Rambaut A.. ( 2007;). beast: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol7:214 [CrossRef][PubMed]
    [Google Scholar]
  11. Ewing B., Green P.. ( 1998;). Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res8:186–194[PubMed][CrossRef]
    [Google Scholar]
  12. Faustino C. R., Jennelle C. S., Connolly V., Davis A. K., Swarthout E. C., Dhondt A. A., Cooch E. G.. ( 2004;). Mycoplasma galllisepticum infection dynamics in a house finch population: seasonal variation in survival, encounter and transmission rate. J Anim Ecol73:651–669 [CrossRef]
    [Google Scholar]
  13. Felsenstein J.. ( 2005;).phylip
  14. Fischer J. R., Stallknecht D. E., Luttrell P., Dhondt A. A., Converse K. A.. ( 1997;). Mycoplasmal conjunctivitis in wild songbirds: the spread of a new contagious disease in a mobile host population. Emerg Infect Dis3:69–72 [CrossRef][PubMed]
    [Google Scholar]
  15. Glew M. D., Browning G. F., Markham P. F., Walker I. D.. ( 2000;). pMGA phenotypic variation in Mycoplasma gallisepticum occurs in vivo and is mediated by trinucleotide repeat length variation. Infect Immun68:6027–6033 [CrossRef][PubMed]
    [Google Scholar]
  16. Gordon D., Abajian C., Green P.. ( 1998;). Consed: a graphical tool for sequence finishing. Genome Res8:195–202[PubMed][CrossRef]
    [Google Scholar]
  17. Gouy M., Guindon S., Gascuel O.. ( 2010;). SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol27:221–224 [CrossRef][PubMed]
    [Google Scholar]
  18. Grodio J. L., Hawley D. M., Osnas E. E., Ley D. H., Dhondt K. V., Dhondt A. A., Schat K. A.. ( 2011;). Pathogenicity and immunogenicity of three Mycoplasma gallisepticum isolates in house finches (Carpodacus mexicanus). Vet Microbiol155:53–61[PubMed][CrossRef]
    [Google Scholar]
  19. Guindon S., Dufayard J. F., Lefort V., Anisimova M., Hordijk W., Gascuel O.. ( 2010;). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol59:307–321 [CrossRef][PubMed]
    [Google Scholar]
  20. Gumulak-Smith J., Teachman A., Tu A. H., Simecka J. W., Lindsey J. R., Dybvig K.. ( 2001;). Variations in the surface proteins and restriction enzyme systems of Mycoplasma pulmonis in the respiratory tract of infected rats. Mol Microbiol40:1037–1044 [CrossRef][PubMed]
    [Google Scholar]
  21. Halbedel S., Hames C., Stülke J.. ( 2007;). Regulation of carbon metabolism in the mollicutes and its relation to virulence. J Mol Microbiol Biotechnol12:147–154 [CrossRef][PubMed]
    [Google Scholar]
  22. Hames C., Halbedel S., Hoppert M., Frey J., Stülke J.. ( 2009;). Glycerol metabolism is important for cytotoxicity of Mycoplasma pneumoniae . J Bacteriol191:747–753 [CrossRef][PubMed]
    [Google Scholar]
  23. Hartup B. K., Kollias G. V., Ley D. H.. ( 2000;). Mycoplasmal conjunctivitis in songbirds from New York. J Wildl Dis36:257–264[PubMed][CrossRef]
    [Google Scholar]
  24. Hawley D. M., Dhondt K. V., Dobson A. P., Grodio J. L., Hochachka W. M., Ley D. H., Osnas E. E., Schat K. A., Dhondt A. A.. ( 2010;). Common garden experiment reveals pathogen isolate but no host genetic diversity effect on the dynamics of an emerging wildlife disease. J Evol Biol23:1680–1688 [CrossRef][PubMed]
    [Google Scholar]
  25. Hayflick L.. ( 1965;). Tissue cultures and mycoplasmas. Tex Rep Biol Med23:Suppl. 11–, 285[PubMed]
    [Google Scholar]
  26. Hochachka W. M., Dhondt A. A.. ( 2000;). Density-dependent decline of host abundance resulting from a new infectious disease. Proc Natl Acad Sci U S A97:5303–5306 [CrossRef][PubMed]
    [Google Scholar]
  27. Hu Q., Liu P., Yu Z., Zhao G., Li J., Teng L., Zhou M., Bei W., Chen H., Jin M.. ( 2010;). Identification of a cell wall-associated subtilisin-like serine protease involved in the pathogenesis of Streptococcus suis serotype 2. Microb Pathog48:103–109 [CrossRef][PubMed]
    [Google Scholar]
  28. Huang X., Madan A.. ( 1999;). CAP3: a DNA sequence assembly program. Genome Res9:868–877 [CrossRef][PubMed]
    [Google Scholar]
  29. Hudson P., Gorton T. S., Papazisi L., Cecchini K., Frasca S. Jr, Geary S. J.. ( 2006;). Identification of a virulence-associated determinant, dihydrolipoamide dehydrogenase (lpd), in Mycoplasma gallisepticum through in vivo screening of transposon mutants. Infect Immun74:931–939 [CrossRef][PubMed]
    [Google Scholar]
  30. Huelsenbeck J. P., Ronquist F.. ( 2001;). mrbayes: Bayesian inference of phylogenetic trees. Bioinformatics17:754–755 [CrossRef][PubMed]
    [Google Scholar]
  31. Huson D. H., Richter D. C., Rausch C., Dezulian T., Franz M., Rupp R.. ( 2007;). Dendroscope: an interactive viewer for large phylogenetic trees. BMC Bioinformatics8:460 [CrossRef][PubMed]
    [Google Scholar]
  32. Hutter S., Vilella A. J., Rozas J.. ( 2006;). Genome-wide DNA polymorphism analyses using VariScan. BMC Bioinformatics7:409 [CrossRef][PubMed]
    [Google Scholar]
  33. Jenkins C., Geary S. J., Gladd M., Djordjevic S. P.. ( 2007;). The Mycoplasma gallisepticum OsmC-like protein MG1142 resides on the cell surface and binds heparin. Microbiology153:1455–1463 [CrossRef][PubMed]
    [Google Scholar]
  34. Jenkins C., Samudrala R., Geary S. J., Djordjevic S. P.. ( 2008;). Structural and functional characterization of an organic hydroperoxide resistance protein from Mycoplasma gallisepticum . J Bacteriol190:2206–2216 [CrossRef][PubMed]
    [Google Scholar]
  35. Katoh K., Toh H.. ( 2008;). Recent developments in the mafft multiple sequence alignment program. Brief Bioinform9:286–298 [CrossRef][PubMed]
    [Google Scholar]
  36. Kurtz S., Choudhuri J. V., Ohlebusch E., Schleiermacher C., Stoye J., Giegerich R.. ( 2001;). REPuter: the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res29:4633–4642 [CrossRef][PubMed]
    [Google Scholar]
  37. Lagesen K., Hallin P., Rødland E. A., Staerfeldt H. H., Rognes T., Ussery D. W.. ( 2007;). RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res35:3100–3108 [CrossRef][PubMed]
    [Google Scholar]
  38. Ley D. H., Berkhoff J. E., McLaren J. M.. ( 1996;). Mycoplasma gallisepticum isolated from house finches (Carpodacus mexicanus) with conjunctivitis. Avian Dis40:480–483 [CrossRef][PubMed]
    [Google Scholar]
  39. Ley D. H., Berkhoff J. E., Levisohn S.. ( 1997;). Molecular epidemiologic investigations of Mycoplasma gallisepticum conjunctivitis in songbirds by random amplified polymorphic DNA analyses. Emerg Infect Dis3:375–380 [CrossRef][PubMed]
    [Google Scholar]
  40. Librado P., Rozas J.. ( 2009;). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics25:1451–1452 [CrossRef][PubMed]
    [Google Scholar]
  41. Lowe T. M., Eddy S. R.. ( 1997;). tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res25:955–964[PubMed][CrossRef]
    [Google Scholar]
  42. Luttrell M. P., Fischer J. R., Stallknecht D. E., Kleven S. H.. ( 1996;). Field investigation of Mycoplasma gallisepticum infections in house finches (Carpodacus mexicanus) from Maryland and Georgia. Avian Dis40:335–341 [CrossRef][PubMed]
    [Google Scholar]
  43. Markham P. F., Glew M. D., Browning G. F., Walker I. D., Whithear K. G.. ( 1996;). Antibody influences expression of pMGA1 of Mycoplasma gallisepticum . IOM Lett4:114–115
    [Google Scholar]
  44. Mojica F. J., Díez-Villaseñor C., García-Martínez J., Soria E.. ( 2005;). Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol60:174–182 [CrossRef][PubMed]
    [Google Scholar]
  45. Myers E. W., Sutton G. G., Delcher A. L., Dew I. M., Fasulo D. P., Flanigan M. J., Kravitz S. A., Mobarry C. M., Reinert K. H.. & other authors ( 2000;). A whole-genome assembly of Drosophila . Science287:2196–2204 [CrossRef][PubMed]
    [Google Scholar]
  46. Ning Z., Cox A. J., Mullikin J. C.. ( 2001;). SSAHA: a fast search method for large DNA databases. Genome Res11:1725–1729 [CrossRef][PubMed]
    [Google Scholar]
  47. Papazisi L., Gorton T. S., Kutish G., Markham P. F., Browning G. F., Nguyen D. K., Swartzell S., Madan A., Mahairas G., Geary S. J.. ( 2003;). The complete genome sequence of the avian pathogen Mycoplasma gallisepticum strain R(low). Microbiology149:2307–2316 [CrossRef][PubMed]
    [Google Scholar]
  48. Pearson W. R., Lipman D. J.. ( 1988;). Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A85:2444–2448 [CrossRef][PubMed]
    [Google Scholar]
  49. Pearson W. R., Wood T., Zhang Z., Miller W.. ( 1997;). Comparison of DNA sequences with protein sequences. Genomics46:24–36 [CrossRef][PubMed]
    [Google Scholar]
  50. Pillai S. R., Mays H. L. Jr, Ley D. H., Luttrell P., Panangala V. S., Farmer K. L., Roberts S. R.. ( 2003;). Molecular variability of house finch Mycoplasma gallisepticum isolates as revealed by sequencing and restriction fragment length polymorphism analysis of the pvpA gene. Avian Dis47:640–648 [CrossRef][PubMed]
    [Google Scholar]
  51. Posada D.. ( 2008;). jModelTest: phylogenetic model averaging. Mol Biol Evol25:1253–1256 [CrossRef][PubMed]
    [Google Scholar]
  52. Rice P., Longden I., Bleasby A.. ( 2000;). emboss: the European Molecular Biology Open Software Suite. Trends Genet16:276–277 [CrossRef][PubMed]
    [Google Scholar]
  53. Simpson J. T., Wong K., Jackman S. D., Schein J. E., Jones S. J., Birol I.. ( 2009;). ABySS: a parallel assembler for short read sequence data. Genome Res19:1117–1123 [CrossRef][PubMed]
    [Google Scholar]
  54. Sonnhammer E. L., Durbin R.. ( 1995;). A dot-matrix program with dynamic threshold control suited for genomic DNA and protein sequence analysis. Gene167:GC1–GC10 [CrossRef][PubMed]
    [Google Scholar]
  55. Sorek R., Kunin V., Hugenholtz P.. ( 2008;). CRISPR – a widespread system that provides acquired resistance against phages in bacteria and archaea. Nat Rev Microbiol6:181–186 [CrossRef][PubMed]
    [Google Scholar]
  56. Stamatakis A.. ( 2006;). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics22:2688–2690 [CrossRef][PubMed]
    [Google Scholar]
  57. Swofford D. L.. ( 2002;). paup*: phylogenetic analysis using parsimony (and other methods), version 4. Sunderland, MA: Sinauer Associates;
  58. Szczepanek S. M., Frasca S. Jr, Schumacher V. L., Liao X., Padula M., Djordjevic S. P., Geary S. J.. ( 2010a;). Identification of lipoprotein MslA as a neoteric virulence factor of Mycoplasma gallisepticum . Infect Immun78:3475–3483 [CrossRef][PubMed]
    [Google Scholar]
  59. Szczepanek S. M., Tulman E. R., Gorton T. S., Liao X., Lu Z., Zinski J., Aziz F., Frasca S. Jr, Kutish G. F., Geary S. J.. ( 2010b;). Comparative genomic analyses of attenuated strains of Mycoplasma gallisepticum . Infect Immun78:1760–1771 [CrossRef][PubMed]
    [Google Scholar]
  60. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol28:2731–2739[PubMed][CrossRef]
    [Google Scholar]
  61. Thompson J. D., Higgins D. G., Gibson T. J.. ( 1994;). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res22:4673–4680 [CrossRef][PubMed]
    [Google Scholar]
  62. Vinh S., Von Haeseler A.. ( 2004;). iqpnni: moving fast through tree space and stopping in time. Mol Biol Evol21:1565–1571 [CrossRef][PubMed]
    [Google Scholar]
  63. Zerbino D. R., Birney E.. ( 2008;). Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res18:821–829 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.058560-0
Loading
/content/journal/micro/10.1099/mic.0.058560-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error