1887

Abstract

Copper is an essential cofactor of various enzymes, but free copper is highly toxic to living cells. To maintain cellular metabolism at different ambient copper concentrations, bacteria have evolved specific copper homeostasis systems that mostly act as defence mechanisms. As well as under free-living conditions, copper defence is critical for virulence in pathogenic bacteria. Most bacteria synthesize P-type copper export ATPases as principal defence determinants when copper concentrations exceed favourable levels. In addition, many bacteria utilize resistance-nodulation-cell division (RND)-type efflux systems and multicopper oxidases to cope with excess copper. This review summarizes our current knowledge on copper-sensing transcriptional regulators, which we assign to nine different classes. Widespread one-component regulators are CueR, CopY and CsoR, which were initially identified in , and , respectively. CueR activates homeostasis gene expression at elevated copper concentrations, while CopY and CsoR repress their target genes under copper-limiting conditions. Besides these one-component systems, which sense the cytoplasmic copper status, many Gram-negative bacteria utilize two-component systems, which sense periplasmic copper concentrations. In addition to these well-studied transcriptional factors, copper control mechanisms acting at the post-transcriptional and the post-translational levels will be discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.058487-0
2012-10-01
2020-12-04
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/10/2451.html?itemId=/content/journal/micro/10.1099/mic.0.058487-0&mimeType=html&fmt=ahah

References

  1. Adaikkalam V., Swarup S.. ( 2002;). Molecular characterization of an operon, cueAR, encoding a putative P1-type ATPase and a MerR-type regulatory protein involved in copper homeostasis in Pseudomonas putida. Microbiology148:2857–2867[PubMed]
    [Google Scholar]
  2. Andoy N. M., Sarkar S. K., Wang Q., Panda D., Benítez J. J., Kalininskiy A., Chen P.. ( 2009;). Single-molecule study of metalloregulator CueR-DNA interactions using engineered Holliday junctions. Biophys J97:844–852 [CrossRef][PubMed]
    [Google Scholar]
  3. Argüello J. M., González-Guerrero M., Raimunda D.. ( 2011;). Bacterial transition metal P1B-ATPases: transport mechanism and roles in virulence. Biochemistry50:9940–9949 [CrossRef][PubMed]
    [Google Scholar]
  4. Arredondo M., Núñez M. T.. ( 2005;). Iron and copper metabolism. Mol Aspects Med26:313–327 [CrossRef][PubMed]
    [Google Scholar]
  5. Barnham K. J., Bush A. I.. ( 2008;). Metals in Alzheimer’s and Parkinson’s diseases. Curr Opin Chem Biol12:222–228 [CrossRef][PubMed]
    [Google Scholar]
  6. Brown N. L., Barrett S. R., Camakaris J., Lee B. T., Rouch D. A.. ( 1995;). Molecular genetics and transport analysis of the copper-resistance determinant (pco) from Escherichia coli plasmid pRJ1004. Mol Microbiol17:1153–1166 [CrossRef][PubMed]
    [Google Scholar]
  7. Brown N. L., Stoyanov J. V., Kidd S. P., Hobman J. L.. ( 2003;). The MerR family of transcriptional regulators. FEMS Microbiol Rev27:145–163 [CrossRef][PubMed]
    [Google Scholar]
  8. Busenlehner L. S., Pennella M. A., Giedroc D. P.. ( 2003;). The SmtB/ArsR family of metalloregulatory transcriptional repressors: structural insights into prokaryotic metal resistance. FEMS Microbiol Rev27:131–143 [CrossRef][PubMed]
    [Google Scholar]
  9. Cha J.-S., Cooksey D. A.. ( 1993;). Copper hypersensitivity and uptake in Pseudomonas syringae containing cloned components of the copper resistance operon. Appl Environ Microbiol59:1671–1674[PubMed]
    [Google Scholar]
  10. Changela A., Chen K., Xue Y., Holschen J., Outten C. E., O’Halloran T. V., Mondragón A.. ( 2003;). Molecular basis of metal-ion selectivity and zeptomolar sensitivity by CueR. Science301:1383–1387 [CrossRef][PubMed]
    [Google Scholar]
  11. Chen K., Yuldasheva S., Penner-Hahn J. E., O’Halloran T. V.. ( 2003;). An atypical linear Cu(I)–S2 center constitutes the high-affinity metal-sensing site in the CueR metalloregulatory protein. J Am Chem Soc125:12088–12089 [CrossRef][PubMed]
    [Google Scholar]
  12. Chillappagari S., Miethke M., Trip H., Kuipers O. P., Marahiel M. A.. ( 2009;). Copper acquisition is mediated by YcnJ and regulated by YcnK and CsoR in Bacillus subtilis. J Bacteriol191:2362–2370 [CrossRef][PubMed]
    [Google Scholar]
  13. Chillappagari S., Seubert A., Trip H., Kuipers O. P., Marahiel M. A., Miethke M.. ( 2010;). Copper stress affects iron homeostasis by destabilizing iron-sulfur cluster formation in Bacillus subtilis. J Bacteriol192:2512–2524 [CrossRef][PubMed]
    [Google Scholar]
  14. Cobine P., Wickramasinghe W. A., Harrison M. D., Weber T., Solioz M., Dameron C. T.. ( 1999;). The Enterococcus hirae copper chaperone CopZ delivers copper(I) to the CopY repressor. FEBS Lett445:27–30 [CrossRef][PubMed]
    [Google Scholar]
  15. Cobine P. A., George G. N., Jones C. E., Wickramasinghe W. A., Solioz M., Dameron C. T.. ( 2002;). Copper transfer from the Cu(I) chaperone, CopZ, to the repressor, Zn(II)CopY: metal coordination environments and protein interactions. Biochemistry41:5822–5829 [CrossRef][PubMed]
    [Google Scholar]
  16. Corbett D., Schuler S., Glenn S., Andrew P. W., Cavet J. S., Roberts I. S.. ( 2011;). The combined actions of the copper-responsive repressor CsoR and copper-metallochaperone CopZ modulate CopA-mediated copper efflux in the intracellular pathogen Listeria monocytogenes. Mol Microbiol81:457–472 [CrossRef][PubMed]
    [Google Scholar]
  17. Dwarakanath S., Chaplin A. K., Hough M. A., Rigali S., Vijgenboom E., Worrall J. A. R.. ( 2012;). Response to copper stress in Streptomyces lividans extends beyond genes under direct control of a copper-sensitive operon repressor protein (CsoR). J Biol Chem287:17833–17847 [CrossRef][PubMed]
    [Google Scholar]
  18. Espariz M., Checa S. K., Audero M. E., Pontel L. B., Soncini F. C.. ( 2007;). Dissecting the Salmonella response to copper. Microbiology153:2989–2997 [CrossRef][PubMed]
    [Google Scholar]
  19. Festa R. A., Jones M. B., Butler-Wu S., Sinsimer D., Gerads R., Bishai W. R., Peterson S. N., Darwin K. H.. ( 2011;). A novel copper-responsive regulon in Mycobacterium tuberculosis. Mol Microbiol79:133–148 [CrossRef][PubMed]
    [Google Scholar]
  20. Franke S., Grass G., Rensing C., Nies D. H.. ( 2003;). Molecular analysis of the copper-transporting efflux system CusCFBA of Escherichia coli. J Bacteriol185:3804–3812 [CrossRef][PubMed]
    [Google Scholar]
  21. Gaballa A., Cao M., Helmann J. D.. ( 2003;). Two MerR homologues that affect copper induction of the Bacillus subtilis copZA operon. Microbiology149:3413–3421 [CrossRef][PubMed]
    [Google Scholar]
  22. Giner-Lamia J., López-Maury L., Reyes J. C., Florencio F. J.. ( 2012;). The CopRS two-component system is responsible for resistance to copper in the cyanobacterium Synechocystis sp. PCC 6803. Plant Physiol159:1806–1818 [CrossRef][PubMed]
    [Google Scholar]
  23. Gómez-Santos N., Pérez J., Sánchez-Sutil M. C., Moraleda-Muñoz A., Muñoz-Dorado J.. ( 2011;). CorE from Myxococcus xanthus is a copper-dependent RNA polymerase sigma factor. PLoS Genet7:e1002106 [CrossRef][PubMed]
    [Google Scholar]
  24. González-Guerrero M., Raimunda D., Cheng X., Argüello J. M.. ( 2010;). Distinct functional roles of homologous Cu+ efflux ATPases in Pseudomonas aeruginosa. Mol Microbiol78:1246–1258 [CrossRef][PubMed]
    [Google Scholar]
  25. Grass G., Rensing C.. ( 2001;). Genes involved in copper homeostasis in Escherichia coli. J Bacteriol183:2145–2147 [CrossRef][PubMed]
    [Google Scholar]
  26. Grass G., Thakali K., Klebba P. E., Thieme D., Müller A., Wildner G. F., Rensing C.. ( 2004;). Linkage between catecholate siderophores and the multicopper oxidase CueO in Escherichia coli. J Bacteriol186:5826–5833 [CrossRef][PubMed]
    [Google Scholar]
  27. Grass G., Rensing C., Solioz M.. ( 2011;). Metallic copper as an antimicrobial surface. Appl Environ Microbiol77:1541–1547 [CrossRef][PubMed]
    [Google Scholar]
  28. Grossoehme N., Kehl-Fie T. E., Ma Z., Adams K. W., Cowart D. M., Scott R. A., Skaar E. P., Giedroc D. P.. ( 2011;). Control of copper resistance and inorganic sulfur metabolism by paralogous regulators in Staphylococcus aureus. J Biol Chem286:13522–13531 [CrossRef][PubMed]
    [Google Scholar]
  29. Gudipaty S. A., Larsen A. S., Rensing C., McEvoy M. M.. ( 2012;). Regulation of Cu(I)/Ag(I) efflux genes in Escherichia coli by the sensor kinase CusS. FEMS Microbiol Lett330:30–37 [CrossRef][PubMed]
    [Google Scholar]
  30. Hiniker A., Collet J. F., Bardwell J. C.. ( 2005;). Copper stress causes an in vivo requirement for the Escherichia coli disulfide isomerase DsbC. J Biol Chem280:33785–33791 [CrossRef][PubMed]
    [Google Scholar]
  31. Keijser B. J., van Wezel G. P., Canters G. W., Kieser T., Vijgenboom E.. ( 2000;). The ram-dependence of Streptomyces lividans differentiation is bypassed by copper. J Mol Microbiol Biotechnol2:565–574[PubMed]
    [Google Scholar]
  32. Kershaw C. J., Brown N. L., Constantinidou C., Patel M. D., Hobman J. L.. ( 2005;). The expression profile of Escherichia coli K-12 in response to minimal, optimal and excess copper concentrations. Microbiology151:1187–1198 [CrossRef][PubMed]
    [Google Scholar]
  33. Kim J. S., Kim M. H., Joe M. H., Song S. S., Lee I. S., Choi S. Y.. ( 2002;). The sctR of Salmonella enterica serova Typhimurium encoding a homologue of MerR protein is involved in the copper-responsive regulation of cuiD. FEMS Microbiol Lett210:99–103 [CrossRef][PubMed]
    [Google Scholar]
  34. Lenartowicz M., Starzyński R., Wieczerzak K., Krzeptowski W., Lipiński P., Styrna J.. ( 2011;). Alterations in the expression of the Atp7a gene in the early postnatal development of the mosaic mutant mice (Atp7a mo-ms) – an animal model for Menkes disease. Gene Expr Patterns11:41–47 [CrossRef][PubMed]
    [Google Scholar]
  35. Liu T., Nakashima S., Hirose K., Shibasaka M., Katsuhara M., Ezaki B., Giedroc D. P., Kasamo K.. ( 2004;). A novel cyanobacterial SmtB/ArsR family repressor regulates the expression of a CPx-ATPase and a metallothionein in response to both Cu(I)/Ag(I) and Zn(II)/Cd(II). J Biol Chem279:17810–17818 [CrossRef][PubMed]
    [Google Scholar]
  36. Liu T., Ramesh A., Ma Z., Ward S. K., Zhang L., George G. N., Talaat A. M., Sacchettini J. C., Giedroc D. P.. ( 2007;). CsoR is a novel Mycobacterium tuberculosis copper-sensing transcriptional regulator. Nat Chem Biol3:60–68 [CrossRef][PubMed]
    [Google Scholar]
  37. Liu T., Chen X., Ma Z., Shokes J., Hemmingsen L., Scott R. A., Giedroc D. P.. ( 2008;). A CuI-sensing ArsR family metal sensor protein with a relaxed metal selectivity profile. Biochemistry47:10564–10575 [CrossRef][PubMed]
    [Google Scholar]
  38. Long F., Su C. C., Zimmermann M. T., Boyken S. E., Rajashankar K. R., Jernigan R. L., Yu E. W.. ( 2010;). Crystal structures of the CusA efflux pump suggest methionine-mediated metal transport. Nature467:484–488 [CrossRef][PubMed]
    [Google Scholar]
  39. Lu Z. H., Solioz M.. ( 2001;). Copper-induced proteolysis of the CopZ copper chaperone of Enterococcus hirae. J Biol Chem276:47822–47827[PubMed]
    [Google Scholar]
  40. Lübben M., Portmann R., Kock G., Stoll R., Young M. M., Solioz M.. ( 2009;). Structural model of the CopA copper ATPase of Enterococcus hirae based on chemical cross-linking. Biometals22:363–375 [CrossRef][PubMed]
    [Google Scholar]
  41. Lutsenko S.. ( 2010;). Human copper homeostasis: a network of interconnected pathways. Curr Opin Chem Biol14:211–217 [CrossRef][PubMed]
    [Google Scholar]
  42. Macomber L., Imlay J. A.. ( 2009;). The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. Proc Natl Acad Sci U S A106:8344–8349 [CrossRef][PubMed]
    [Google Scholar]
  43. Magnani D., Barré O., Gerber S. D., Solioz M.. ( 2008;). Characterization of the CopR regulon of Lactococcus lactis IL1403. J Bacteriol190:536–545 [CrossRef][PubMed]
    [Google Scholar]
  44. Mermod M., Magnani D., Solioz M., Stoyanov J. V.. ( 2012;). The copper-inducible ComR (YcfQ) repressor regulates expression of ComC (YcfR), which affects copper permeability of the outer membrane of Escherichia coli. Biometals25:33–43 [CrossRef][PubMed]
    [Google Scholar]
  45. Mills S. D., Jasalavich C. A., Cooksey D. A.. ( 1993;). A two-component regulatory system required for copper-inducible expression of the copper resistance operon of Pseudomonas syringae. J Bacteriol175:1656–1664[PubMed]
    [Google Scholar]
  46. Mitrakul K., Loo C. Y., Hughes C. V., Ganeshkumar N.. ( 2004;). Role of a Streptococcus gordonii copper-transport operon, copYAZ, in biofilm detachment. Oral Microbiol Immunol19:395–402 [CrossRef][PubMed]
    [Google Scholar]
  47. Multhaup G., Strausak D., Bissig K.-D., Solioz M.. ( 2001;). Interaction of the CopZ copper chaperone with the CopA copper ATPase of Enterococcus hirae assessed by surface plasmon resonance. Biochem Biophys Res Commun288:172–177 [CrossRef][PubMed]
    [Google Scholar]
  48. Nawapan S., Charoenlap N., Charoenwuttitam A., Saenkham P., Mongkolsuk S., Vattanaviboon P.. ( 2009;). Functional and expression analyses of the cop operon, required for copper resistance in Agrobacterium tumefaciens. J Bacteriol191:5159–5168 [CrossRef][PubMed]
    [Google Scholar]
  49. Odermatt A., Solioz M.. ( 1995;). Two trans-acting metalloregulatory proteins controlling expression of the copper-ATPases of Enterococcus hirae. J Biol Chem270:4349–4354 [CrossRef][PubMed]
    [Google Scholar]
  50. Odermatt A., Krapf R., Solioz M.. ( 1994;). Induction of the putative copper ATPases, CopA and CopB, of Enterococcus hirae by Ag+ and Cu2+, and Ag+ extrusion by CopB. Biochem Biophys Res Commun202:44–48 [CrossRef][PubMed]
    [Google Scholar]
  51. Outten F. W., Outten C. E., Hale J., O’Halloran T. V.. ( 2000;). Transcriptional activation of an Escherichia coli copper efflux regulon by the chromosomal MerR homologue, CueR. J Biol Chem275:31024–31029 [CrossRef][PubMed]
    [Google Scholar]
  52. Outten F. W., Huffman D. L., Hale J. A., O’Halloran T. V.. ( 2001;). The independent cue and cus systems confer copper tolerance during aerobic and anaerobic growth in Escherichia coli. J Biol Chem276:30670–30677 [CrossRef][PubMed]
    [Google Scholar]
  53. Palmer T., Berks B. C.. ( 2012;). The twin-arginine translocation (Tat) protein export pathway. Nat Rev Microbiol10:483–496[PubMed]
    [Google Scholar]
  54. Peuser V., Glaeser J., Klug G.. ( 2011;). The RSP_2889 gene product of Rhodobacter sphaeroides is a CueR homologue controlling copper-responsive genes. Microbiology157:3306–3313 [CrossRef][PubMed]
    [Google Scholar]
  55. Pontel L. B., Soncini F. C.. ( 2009;). Alternative periplasmic copper-resistance mechanisms in Gram negative bacteria. Mol Microbiol73:212–225 [CrossRef][PubMed]
    [Google Scholar]
  56. Pontel L. B., Audero M. E., Espariz M., Checa S. K., Soncini F. C.. ( 2007;). GolS controls the response to gold by the hierarchical induction of Salmonella-specific genes that include a CBA efflux-coding operon. Mol Microbiol66:814–825 [CrossRef][PubMed]
    [Google Scholar]
  57. Portmann R., Poulsen K. R., Wimmer R., Solioz M.. ( 2006;). CopY-like copper inducible repressors are putative ‘winged helix’ proteins. Biometals19:61–70 [CrossRef][PubMed]
    [Google Scholar]
  58. Quaranta D., McEvoy M. M., Rensing C.. ( 2009;). Site-directed mutagenesis identifies a molecular switch involved in copper sensing by the histidine kinase CinS in Pseudomonas putida KT2440. J Bacteriol191:5304–5311 [CrossRef][PubMed]
    [Google Scholar]
  59. Rademacher C., Moser R., Lackmann J.-W., Klinkert B., Narberhaus F., Masepohl B.. ( 2012;). Transcriptional and posttranscriptional events control copper-responsive expression of a Rhodobacter capsulatus multicopper oxidase. J Bacteriol194:1849–1859 [CrossRef][PubMed]
    [Google Scholar]
  60. Rensing C., Grass G.. ( 2003;). Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS Microbiol Rev27:197–213 [CrossRef][PubMed]
    [Google Scholar]
  61. Rensing C., Fan B., Sharma R., Mitra B., Rosen B. P.. ( 2000;). CopA: an Escherichia coli Cu(I)-translocating P-type ATPase. Proc Natl Acad Sci U S A97:652–656 [CrossRef][PubMed]
    [Google Scholar]
  62. Reyes-Jara A., Latorre M., López G., Bourgogne A., Murray B. E., Cambiazo V., González M.. ( 2010;). Genome-wide transcriptome analysis of the adaptive response of Enterococcus faecalis to copper exposure. Biometals23:1105–1112 [CrossRef][PubMed]
    [Google Scholar]
  63. Sakamoto K., Agari Y., Agari K., Kuramitsu S., Shinkai A.. ( 2010;). Structural and functional characterization of the transcriptional repressor CsoR from Thermus thermophilus HB8. Microbiology156:1993–2005 [CrossRef][PubMed]
    [Google Scholar]
  64. Schelder S., Zaade D., Litsanov B., Bott M., Brocker M.. ( 2011;). The two-component signal transduction system CopRS of Corynebacterium glutamicum is required for adaptation to copper-excess stress. PLoS ONE6:e22143 [CrossRef][PubMed]
    [Google Scholar]
  65. Schwan W. R., Warrener P., Keunz E., Stover C. K., Folger K. R.. ( 2005;). Mutations in the cueA gene encoding a copper homeostasis P-type ATPase reduce the pathogenicity of Pseudomonas aeruginosa in mice. Int J Med Microbiol295:237–242 [CrossRef][PubMed]
    [Google Scholar]
  66. Shafeeq S., Yesilkaya H., Kloosterman T. G., Narayanan G., Wandel M., Andrew P. W., Kuipers O. P., Morrissey J. A.. ( 2011;). The cop operon is required for copper homeostasis and contributes to virulence in Streptococcus pneumoniae. Mol Microbiol81:1255–1270 [CrossRef][PubMed]
    [Google Scholar]
  67. Singh S. K., Grass G., Rensing C., Montfort W. R.. ( 2004;). Cuprous oxidase activity of CueO from Escherichia coli. J Bacteriol186:7815–7817 [CrossRef][PubMed]
    [Google Scholar]
  68. Smaldone G. T., Helmann J. D.. ( 2007;). CsoR regulates the copper efflux operon copZA in Bacillus subtilis. Microbiology153:4123–4128 [CrossRef][PubMed]
    [Google Scholar]
  69. Solioz M.. ( 2002;). Role of proteolysis in copper homoeostasis. Biochem Soc Trans30:688–691 [CrossRef][PubMed]
    [Google Scholar]
  70. Solioz M., Stoyanov J. V.. ( 2003;). Copper homeostasis in Enterococcus hirae. FEMS Microbiol Rev27:183–195 [CrossRef][PubMed]
    [Google Scholar]
  71. Solioz M., Abicht H. K., Mermod M., Mancini S.. ( 2010;). Response of Gram-positive bacteria to copper stress. J Biol Inorg Chem15:3–14 [CrossRef][PubMed]
    [Google Scholar]
  72. Stoyanov J. V., Hobman J. L., Brown N. L.. ( 2001;). CueR (YbbI) of Escherichia coli is a MerR family regulator controlling expression of the copper exporter CopA. Mol Microbiol39:502–512 [CrossRef][PubMed]
    [Google Scholar]
  73. Strausak D., Solioz M.. ( 1997;). CopY is a copper-inducible repressor of the Enterococcus hirae copper ATPases. J Biol Chem272:8932–8936 [CrossRef][PubMed]
    [Google Scholar]
  74. Teitzel G. M., Geddie A., De Long S. K., Kirisits M. J., Whiteley M., Parsek M. R.. ( 2006;). Survival and growth in the presence of elevated copper: transcriptional profiling of copper-stressed Pseudomonas aeruginosa. J Bacteriol188:7242–7256 [CrossRef][PubMed]
    [Google Scholar]
  75. Thaden J. T., Lory S., Gardner T. S.. ( 2010;). Quorum-sensing regulation of a copper toxicity system in Pseudomonas aeruginosa. J Bacteriol192:2557–2568 [CrossRef][PubMed]
    [Google Scholar]
  76. Vats N., Lee S. F.. ( 2001;). Characterization of a copper-transport operon, copYAZ, from Streptococcus mutans. Microbiology147:653–662[PubMed]
    [Google Scholar]
  77. Voloudakis A. E., Reignier T. M., Cooksey D. A.. ( 2005;). Regulation of resistance to copper in Xanthomonas axonopodis pv. vesicatoria. Appl Environ Microbiol71:782–789 [CrossRef][PubMed]
    [Google Scholar]
  78. Waidner B., Melchers K., Stähler F. N., Kist M., Bereswill S.. ( 2005;). The Helicobacter pylori CrdRS two-component regulation system (HP1364/HP1365) is required for copper-mediated induction of the copper resistance determinant CrdA. J Bacteriol187:4683–4688 [CrossRef][PubMed]
    [Google Scholar]
  79. Ward S. K., Abomoelak B., Hoye E. A., Steinberg H., Talaat A. M.. ( 2010;). CtpV: a putative copper exporter required for full virulence of Mycobacterium tuberculosis. Mol Microbiol77:1096–1110 [CrossRef][PubMed]
    [Google Scholar]
  80. Wiethaus J., Wildner G. F., Masepohl B.. ( 2006;). The multicopper oxidase CutO confers copper tolerance to Rhodobacter capsulatus. FEMS Microbiol Lett256:67–74 [CrossRef][PubMed]
    [Google Scholar]
  81. Yamamoto K., Ishihama A.. ( 2005;). Transcriptional response of Escherichia coli to external copper. Mol Microbiol56:215–227 [CrossRef][PubMed]
    [Google Scholar]
  82. Yamamoto K., Ishihama A.. ( 2006;). Characterization of copper-inducible promoters regulated by CpxA/CpxR in Escherichia coli. Biosci Biotechnol Biochem70:1688–1695 [CrossRef][PubMed]
    [Google Scholar]
  83. Yamamoto K., Hirao K., Oshima T., Aiba H., Utsumi R., Ishihama A.. ( 2005;). Functional characterization in vitro of all two-component signal transduction systems from Escherichia coli. J Biol Chem280:1448–1456 [CrossRef][PubMed]
    [Google Scholar]
  84. Zhang X.-X., Rainey P. B.. ( 2008;). Regulation of copper homeostasis in Pseudomonas fluorescens SBW25. Environ Microbiol10:3284–3294 [CrossRef][PubMed]
    [Google Scholar]
  85. Zhang L., McSpadden B., Pakrasi H. B., Whitmarsh J.. ( 1992;). Copper-mediated regulation of cytochrome c 553 and plastocyanin in the cyanobacterium Synechocystis 6803. J Biol Chem267:19054–19059[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.058487-0
Loading
/content/journal/micro/10.1099/mic.0.058487-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error