1887

Abstract

Proteins belonging to the P family coordinate cellular nitrogen metabolism by direct interaction with a variety of enzymes, transcriptional regulators and transporters. The sensing function of P relies on its ability to bind the nitrogen/carbon signalling molecule 2-oxoglutarate (2-OG). In Proteobacteria, P is further subject to reversible uridylylation according to the intracellular levels of glutamine, which reflect the cellular nitrogen status. A number of P proteins have been shown to bind ADP and ATP in a competitive manner, suggesting that P might act as an energy sensor. Here, we analyse the influence of the ADP/ATP ratio, 2-OG levels and divalent metal ions on uridylylation of the P proteins GlnB and GlnZ, and on interaction with their targets AmtB, DraG and DraT. The results support the notion that the cellular concentration of 2-OG is a key factor governing occupation of the GlnB and GlnZ nucleotide binding sites by ATP or ADP, with high 2-OG levels favouring the occupation of P by ATP. Both P uridylylation and interaction with target proteins responded to the ADP/ATP ratio within the expected physiological range, supporting the concept that P proteins might act as cellular energy sensors.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.058446-0
2012-06-01
2020-01-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/6/1656.html?itemId=/content/journal/micro/10.1099/mic.0.058446-0&mimeType=html&fmt=ahah

References

  1. Araújo M. S., Baura V. A., Souza E. M., Benelli E. M., Rigo L. U., Steffens M. B., Pedrosa F. O., Chubatsu L. S.. ( 2004;). In vitro uridylylation of the Azospirillum brasilense N-signal transducing GlnZ protein. Protein Expr Purif33:19–24 [CrossRef][PubMed]
    [Google Scholar]
  2. Araújo L. M., Huergo L. F., Invitti A. L., Gimenes C. I., Bonatto A. C., Monteiro R. A., Souza E. M., Pedrosa F. O., Chubatsu L. S.. ( 2008;). Different responses of the GlnB and GlnZ proteins upon in vitro uridylylation by the Azospirillum brasilense GlnD protein. Braz J Med Biol Res41:289–294 [CrossRef][PubMed]
    [Google Scholar]
  3. Bennett B. D., Kimball E. H., Gao M., Osterhout R., Van Dien S. J., Rabinowitz J. D.. ( 2009;). Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli . Nat Chem Biol5:593–599 [CrossRef][PubMed]
    [Google Scholar]
  4. Bonatto A. C., Souza E. M., Oliveira M. A., Monteiro R. A., Chubatsu L. S., Huergo L. F., Pedrosa F. O.. ( 2012;). Uridylylation of Herbaspirillum seropedicae GlnB and GlnK proteins is differentially affected by ATP, ADP and 2-oxoglutarate in vitro . Arch Microbiol[Epub ahead of print]
    [Google Scholar]
  5. Conroy M. J., Durand A., Lupo D., Li X. D., Bullough P. A., Winkler F. K., Merrick M.. ( 2007;). The crystal structure of the Escherichia coli AmtB-GlnK complex reveals how GlnK regulates the ammonia channel. Proc Natl Acad Sci U S A104:1213–1218 [CrossRef][PubMed]
    [Google Scholar]
  6. de Zamaroczy M.. ( 1998;). Structural homologues PII and PZ of Azospirillum brasilense provide intracellular signalling for selective regulation of various nitrogen-dependent functions. Mol Microbiol29:449–463 [CrossRef][PubMed]
    [Google Scholar]
  7. Dixon R., Kahn D.. ( 2004;). Genetic regulation of biological nitrogen fixation. Nat Rev Microbiol2:621–631 [CrossRef][PubMed]
    [Google Scholar]
  8. Dodsworth J. A., Leigh J. A.. ( 2006;). Regulation of nitrogenase by 2-oxoglutarate-reversible, direct binding of a PII-like nitrogen sensor protein to dinitrogenase. Proc Natl Acad Sci U S A103:9779–9784 [CrossRef][PubMed]
    [Google Scholar]
  9. Dominguez D. C.. ( 2004;). Calcium signalling in bacteria. Mol Microbiol54:291–297 [CrossRef][PubMed]
    [Google Scholar]
  10. Fokina O., Chellamuthu V. R., Forchhammer K., Zeth K.. ( 2010;). Mechanism of 2-oxoglutarate signaling by the Synechococcus elongatus PII signal transduction protein. Proc Natl Acad Sci U S A107:19760–19765 [CrossRef][PubMed]
    [Google Scholar]
  11. Fokina O., Herrmann C., Forchhammer K.. ( 2011;). Signal-transduction protein P(II) from Synechococcus elongatus PCC 7942 senses low adenylate energy charge in vitro. Biochem J440:147–156 [CrossRef][PubMed]
    [Google Scholar]
  12. Forchhammer K.. ( 2008;). P(II) signal transducers: novel functional and structural insights. Trends Microbiol16:65–72 [CrossRef][PubMed]
    [Google Scholar]
  13. Harding M. M.. ( 2000;). The geometry of metal-ligand interactions relevant to proteins. II. Angles at the metal atom, additional weak metal-donor interactions. Acta Crystallogr D Biol Crystallogr56:857–867 [CrossRef][PubMed]
    [Google Scholar]
  14. Huergo L. F., Merrick M., Pedrosa F. O., Chubatsu L. S., Araújo L. M., Souza E. M.. ( 2007;). Ternary complex formation between AmtB, GlnZ and the nitrogenase regulatory enzyme DraG reveals a novel facet of nitrogen regulation in bacteria. Mol Microbiol66:1523–1535[PubMed]
    [Google Scholar]
  15. Huergo L. F., Merrick M., Monteiro R. A., Chubatsu L. S., Steffens M. B., Pedrosa F. O., Souza E. M.. ( 2009;). In vitro interactions between the PII proteins and the nitrogenase regulatory enzymes dinitrogenase reductase ADP-ribosyltransferase (DraT) and dinitrogenase reductase-activating glycohydrolase (DraG) in Azospirillum brasilense . J Biol Chem284:6674–6682 [CrossRef][PubMed]
    [Google Scholar]
  16. Huergo L. F., Pedrosa F. O., Muller-Santos M., Chubatsu L. S., Monteiro R. A., Merrick M., Souza E. M.. ( 2012;). PII signal transduction proteins: pivotal players in post-translational control of nitrogenase activity. Microbiology158:176–190 [CrossRef][PubMed]
    [Google Scholar]
  17. Jiang P., Ninfa A. J.. ( 2009;). Sensation and signaling of alpha-ketoglutarate and adenylylate energy charge by the Escherichia coli PII signal transduction protein require cooperation of the three ligand-binding sites within the PII trimer. Biochemistry48:11522–11531 [CrossRef][PubMed]
    [Google Scholar]
  18. Jiang P., Zucker P., Atkinson M. R., Kamberov E. S., Tirasophon W., Chandran P., Schefke B. R., Ninfa A. J.. ( 1997;). Structure/function analysis of the PII signal transduction protein of Escherichia coli: genetic separation of interactions with protein receptors. J Bacteriol179:4342–4353[PubMed]
    [Google Scholar]
  19. Jiang P., Peliska J. A., Ninfa A. J.. ( 1998;). Enzymological characterization of the signal-transducing uridylyltransferase/uridylyl-removing enzyme (EC 2.7.7.59) of Escherichia coli and its interaction with the PII protein. Biochemistry37:12782–12794 [CrossRef][PubMed]
    [Google Scholar]
  20. Leganés F., Forchhammer K., Fernández-Piñas F.. ( 2009;). Role of calcium in acclimation of the cyanobacterium Synechococcus elongatus PCC 7942 to nitrogen starvation. Microbiology155:25–34 [CrossRef][PubMed]
    [Google Scholar]
  21. Maheswaran M., Urbanke C., Forchhammer K.. ( 2004;). Complex formation and catalytic activation by the PII signaling protein of N-acetyl-l-glutamate kinase from Synechococcus elongatus strain PCC 7942. J Biol Chem279:55202–55210 [CrossRef][PubMed]
    [Google Scholar]
  22. Maier S., Schleberger P., W., Wacker T., Pflüger T., Litz C., Andrade S. L.. ( 2011;). Mechanism of disruption of the Amt-GlnK complex by P(II)-mediated sensing of 2-oxoglutarate. PLoS ONE6:e26327 [CrossRef][PubMed]
    [Google Scholar]
  23. Moure V. R., Razzera G., Araújo L. M., Oliveira M. A., Gerhardt E. C., Müller-Santos M., Almeida F., Pedrosa F. O., Valente A. P. et al. ( 2012;). Heat stability of Proteobacterial PII protein facilitate purification using a single chromatography step. Protein Expr Purif81:83–88 [CrossRef][PubMed]
    [Google Scholar]
  24. Paul T. D., Ludden P. W.. ( 1984;). Adenine nucleotide levels in Rhodospirillum rubrum during switch-off of whole-cell nitrogenase activity. Biochem J224:961–969[PubMed]
    [Google Scholar]
  25. Radchenko M. V., Thornton J., Merrick M.. ( 2010;). Control of AmtB-GlnK complex formation by intracellular levels of ATP, ADP, and 2-oxoglutarate. J Biol Chem285:31037–31045 [CrossRef][PubMed]
    [Google Scholar]
  26. Rajendran C., Gerhardt E. C., Bjelic S., Gasperina A., Scarduelli M., Pedrosa F. O., Chubatsu L. S., Merrick M., Souza E. M. et al. ( 2011;). Crystal structure of the GlnZ-DraG complex reveals a different form of PII-target interaction. Proc Natl Acad Sci U S A108:18972–18976 [CrossRef][PubMed]
    [Google Scholar]
  27. Rodrigues T. E., Souza V. E., Monteiro R. A., Gerhardt E. C., Araújo L. M., Chubatsu L. S., Souza E. M., Pedrosa F. O., Huergo L. F.. ( 2011;). In vitro interaction between the ammonium transport protein AmtB and partially uridylylated forms of the P(II) protein GlnZ. Biochim Biophys Acta1814:1203–1209[PubMed][CrossRef]
    [Google Scholar]
  28. Sarkar A., Köhler J., Hurek T., Reinhold-Hurek B.. ( 2012;). A novel regulatory role of the Rnf complex of Azoarcus sp. strain BH72. Mol Microbiol83:408–422 [CrossRef][PubMed]
    [Google Scholar]
  29. Senior P. J.. ( 1975;). Regulation of nitrogen metabolism in Escherichia coli and Klebsiella aerogenes: studies with the continuous-culture technique. J Bacteriol123:407–418[PubMed]
    [Google Scholar]
  30. Teixeira P. F., Jonsson A., Frank M., Wang H., Nordlund S.. ( 2008;). Interaction of the signal transduction protein GlnJ with the cellular targets AmtB1, GlnE and GlnD in Rhodospirillum rubrum: dependence on manganese, 2-oxoglutarate and the ADP/ATP ratio. Microbiology154:2336–2347 [CrossRef][PubMed]
    [Google Scholar]
  31. Truan D., Huergo L. F., Chubatsu L. S., Merrick M., Li X. D., Winkler F. K.. ( 2010;). A new P(II) protein structure identifies the 2-oxoglutarate binding site. J Mol Biol400:531–539 [CrossRef][PubMed]
    [Google Scholar]
  32. Upchurch R. G., Mortenson L. E.. ( 1980;). In vivo energetics and control of nitrogen fixation: changes in the adenylate energy charge and adenosine 5′-diphosphate/adenosine 5′-triphosphate ratio of cells during growth on dinitrogen versus growth on ammonia. J Bacteriol143:274–284[PubMed]
    [Google Scholar]
  33. Xu Y., Cheah E., Carr P. D., van Heeswijk W. C., Westerhoff H. V., Vasudevan S. G., Ollis D. L.. ( 1998;). GlnK, a PII-homologue: structure reveals ATP binding site and indicates how the T-loops may be involved in molecular recognition. J Mol Biol282:149–165 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.058446-0
Loading
/content/journal/micro/10.1099/mic.0.058446-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error