Biosynthesis of branched-chain amino acids is essential for effective symbioses between betarhizobia and Free

Abstract

STM815 and LMG19424 are betaproteobacterial strains that can effectively nodulate several species of the large legume genus . A Tn mutant, derived from STM815 (KM60), and another derived from LMG19424 (KM184-55) induced Fix nodules on . The Tn-interrupted genes of the mutants showed strong homologies to , which encodes a branched-chain amino acid aminotransferase, and , which encodes the large subunit of isopropylmalate isomerase. Both enzymes are known to be involved in the biosynthetic pathways for branched-chain amino acids (BCAAs) (leucine, valine and isoleucine). The mutant, KM60, was not auxotrophic for BCAAs and could grow well on minimal medium with pyruvate as a carbon source and ammonia as a nitrogen source. However, it grew less efficiently than the wild-type (WT) strain when ammonia was substituted with valine or isoleucine as a nitrogen source. The BCAA aminotransferase activity of KM60 was significantly reduced relative to the WT strain, especially with isoleucine and valine as amino group donors. The mutant, KM184-55, could not grow on a minimal medium with pyruvate as a carbon source and ammonia as a nitrogen source, but its growth was restored when leucine was added to the medium. The isopropylmalate isomerase activity of KM184-55 was completely lost compared with the WT strain. Both mutants recovered their respective enzyme activities after complementation with the WT or genes and were subsequently able to grow as well as their parental strains on minimal medium. They were also able to form nitrogen-fixing nodules on . We conclude that the biosynthesis of BCAAs is essential for the free-living growth of betarhizobia, as well as for their ability to form effective symbioses with their host plant.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.058370-0
2012-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/7/1758.html?itemId=/content/journal/micro/10.1099/mic.0.058370-0&mimeType=html&fmt=ahah

References

  1. Aguilar O. M., Grasso D. H. ( 1991). The product of the Rhizobium meliloti ilvC gene is required for isoleucine and valine synthesis and nodulation of alfalfa. J Bacteriol 173:7756–7764[PubMed]
    [Google Scholar]
  2. Boyer H. W., Roulland-Dussoix D. ( 1969). A complementation analysis of the restriction and modification of DNA in Escherichia coli . J Mol Biol 41:459–472 [View Article][PubMed]
    [Google Scholar]
  3. Brewin N. J. ( 1991). Development of the legume root nodule. Annu Rev Cell Biol 7:191–226 [View Article][PubMed]
    [Google Scholar]
  4. Chen W. M., Laevens S., Lee T. M., Coenye T., De Vos P., Mergeay M., Vandamme P. ( 2001). Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. Int J Syst Evol Microbiol 51:1729–1735 [View Article][PubMed]
    [Google Scholar]
  5. Chen W. M., James E. K., Prescott A. R., Kierans M., Sprent J. I. ( 2003). Nodulation of Mimosa spp. by the β-proteobacterium Ralstonia taiwanensis . Mol Plant Microbe Interact 16:1051–1061 [View Article][PubMed]
    [Google Scholar]
  6. Chen W. M., de Faria S. M., Straliotto R., Pitard R. M., Simões-Araùjo J. L., Chou J. H., Chou Y. J., Barrios E., Prescott A. R. et al. ( 2005). Proof that Burkholderia strains form effective symbioses with legumes: a study of novel Mimosa-nodulating strains from South America. Appl Environ Microbiol 71:7461–7471 [View Article][PubMed]
    [Google Scholar]
  7. de las Nieves Peltzer M., Roques N., Poinsot V., Aguilar O. M., Batut J., Capela D. ( 2008). Auxotrophy accounts for nodulation defect of most Sinorhizobium meliloti mutants in the branched-chain amino acid biosynthesis pathway. Mol Plant Microbe Interact 21:1232–1241 [View Article][PubMed]
    [Google Scholar]
  8. de Lorenzo V., Herrero M., Jakubzik U., Timmis K. N. ( 1990). Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria. J Bacteriol 172:6568–6572[PubMed]
    [Google Scholar]
  9. dos Reis F. B. Jr, Simon M. F., Gross E., Boddey R. M., Elliott G. N., Neto N. E., Loureiro M. F., de Queiroz L. P., Scotti M. R. et al. ( 2010). Nodulation and nitrogen fixation by Mimosa spp. in the Cerrado and Caatinga biomes of Brazil. New Phytol 186:934–946 [View Article][PubMed]
    [Google Scholar]
  10. Elliott G. N., Chen W. M., Chou J. H., Wang H. C., Sheu S. Y., Perin L., Reis V. M., Moulin L., Simon M. F. et al. ( 2007). Burkholderia phymatum is a highly effective nitrogen-fixing symbiont of Mimosa spp. and fixes nitrogen ex planta . New Phytol 173:168–180 [View Article][PubMed]
    [Google Scholar]
  11. Ferraioli S., Tatè R., Cermola M., Favre R., Iaccarino M., Patriarca E. J. ( 2002). Auxotrophic mutant strains of Rhizobium etli reveal new nodule development phenotypes. Mol Plant Microbe Interact 15:501–510 [View Article][PubMed]
    [Google Scholar]
  12. Figurski D. H., Helinski D. R. ( 1979). Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans . Proc Natl Acad Sci U S A 76:1648–1652 [View Article][PubMed]
    [Google Scholar]
  13. Gibson A. H. ( 1963). Physical environment and symbiotic nitrogen fixation. I. The effect of root temperature on recently nodulated Trifolium subterraneum L. plants. Aust J Biol Sci 16:28–42
    [Google Scholar]
  14. Gibson K. E., Kobayashi H., Walker G. C. ( 2008). Molecular determinants of a symbiotic chronic infection. Annu Rev Genet 42:413–441 [View Article][PubMed]
    [Google Scholar]
  15. Gross S. R., Burns R. O., Umbarger H. E. ( 1963). The biosynthesis of leucine. II. The enzymic isomerization of β-carboxy-β-hydroxyisocaproate and α-hydroxy-β-carboxyisocaproate. Biochemistry 2:1046–1052 [View Article][PubMed]
    [Google Scholar]
  16. Gyaneshwar P., Hirsch A. M., Moulin L., Chen W.-M., Elliott G. N., Bontemps C., Estrada-de Los Santos P., Gross E., Dos Reis F. B. Jr et al. ( 2011). Legume-nodulating betaproteobacteria: diversity, host range, and future prospects. Mol Plant Microbe Interact 24:1276–1288 [View Article][PubMed]
    [Google Scholar]
  17. Hassani R., Prasad C. K., Vineetha K. E., Vij N., Singh P., Sud R., Yadav S., Randhawa G. S. ( 2002). Symbiotic characterization of isoleucine+valine and leucine auxotrophs of Sinorhizobium meliloti . Indian J Exp Biol 40:1110–1120[PubMed]
    [Google Scholar]
  18. James E. K., Crawford R. M. M. ( 1998). Effect of oxygen availability on nitrogen fixation by two Lotus species under flooded conditions. J Exp Bot 49:599–609 [CrossRef]
    [Google Scholar]
  19. Kerppola T. K., Kahn M. L. ( 1988). Symbiotic phenotypes of auxotrophic mutants of Rhizobium meliloti 104A14. J Gen Microbiol 134:913–919[PubMed]
    [Google Scholar]
  20. Kovach M. E., Elzer P. H., Hill D. S., Robertson G. T., Farris M. A., Roop R. M. II, Peterson K. M. ( 1995). Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175–176 [View Article][PubMed]
    [Google Scholar]
  21. Kummer R. M., Kuykendall L. D. ( 1989). Symbiotic properties of amino acid auxotrophs of Bradyrhizobium japonicum . Soil Biol Biochem 21:779–782 [View Article]
    [Google Scholar]
  22. Lodwig E. M., Hosie A. H. F., Bourdès A., Findlay K., Allaway D., Karunakaran R., Downie J. A., Poole P. S. ( 2003). Amino-acid cycling drives nitrogen fixation in the legume-Rhizobium symbiosis. Nature 422:722–726 [View Article][PubMed]
    [Google Scholar]
  23. López J. C., Grasso D. H., Frugier F., Crespi M. D., Aguilar O. M. ( 2001). Early symbiotic responses induced by Sinorhizobium meliloti iIvC mutants in alfalfa. Mol Plant Microbe Interact 14:55–62 [View Article][PubMed]
    [Google Scholar]
  24. Matthysse A. G., Stretton S., Dandie C., McClure N. C., Goodman A. E. ( 1996). Construction of GFP vectors for use in gram-negative bacteria other than Escherichia coli . FEMS Microbiol Lett 145:87–94 [View Article][PubMed]
    [Google Scholar]
  25. Oldroyd G. E. D., Downie J. A. ( 2008). Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu Rev Plant Biol 59:519–546 [View Article][PubMed]
    [Google Scholar]
  26. Pobigaylo N., Szymczak S., Nattkemper T. W., Becker A. ( 2008). Identification of genes relevant to symbiosis and competitiveness in Sinorhizobium meliloti using signature-tagged mutants. Mol Plant Microbe Interact 21:219–231 [View Article][PubMed]
    [Google Scholar]
  27. Prell J., Poole P. ( 2006). Metabolic changes of rhizobia in legume nodules. Trends Microbiol 14:161–168 [View Article][PubMed]
    [Google Scholar]
  28. Prell J., White J. P., Bourdes A., Bunnewell S., Bongaerts R. J., Poole P. S. ( 2009). Legumes regulate Rhizobium bacteroid development and persistence by the supply of branched-chain amino acids. Proc Natl Acad Sci U S A 106:12477–12482 [View Article][PubMed]
    [Google Scholar]
  29. Prell J., Bourdès A., Kumar S., Lodwig E., Hosie A., Kinghorn S., White J., Poole P. ( 2010). Role of symbiotic auxotrophy in the Rhizobium-legume symbioses. PLoS ONE 5:e13933 [View Article][PubMed]
    [Google Scholar]
  30. Sambrook J., Fritsch E. F. ( 1989). Molecular Cloning: A Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  31. Sanjuán-Pinilla J. M., Muñoz S., Nogales J., Olivares J., Sanjuán J. ( 2002). Involvement of the Sinorhizobium meliloti leuA gene in activation of nodulation genes by NodD1 and luteolin. Arch Microbiol 178:36–44 [View Article][PubMed]
    [Google Scholar]
  32. Somasegaran P., Hoben H. J. ( 1994). Handbook for Rhizobia: Methods in Legume-Rhizobium Technology New York: Springer-Verlag; [CrossRef]
    [Google Scholar]
  33. Stowers M. D. ( 1985). Carbon metabolism in Rhizobium species. Annu Rev Microbiol 39:89–108 [View Article][PubMed]
    [Google Scholar]
  34. Thage B. V., Rattray F. P., Laustsen M. W., Ardö Y., Barkholt V., Houlberg U. ( 2004). Purification and characterization of a branched-chain amino acid aminotransferase from Lactobacillus paracasei subsp. paracasei CHCC 2115. J Appl Microbiol 96:593–602 [View Article][PubMed]
    [Google Scholar]
  35. Truchet G., Michel M., Dénarié J. ( 1980). Sequential analysis of the organogenesis of lucerne (Medicago sativa) root nodules using symbiotically-defective mutants of Rhizobium meliloti . Differentiation 16:163–172 [View Article]
    [Google Scholar]
  36. van Rhijn P., Vanderleyden J. ( 1995). The Rhizobium-plant symbiosis. Microbiol Rev 59:124–142[PubMed]
    [Google Scholar]
  37. Vandamme P., Goris J., Chen W. M., de Vos P., Willems A. ( 2002). Burkholderia tuberum sp. nov. and Burkholderia phymatum sp. nov., nodulate the roots of tropical legumes. Syst Appl Microbiol 25:507–512 [View Article][PubMed]
    [Google Scholar]
  38. Vincent J. M. ( 1970). A Manual for the Practical Study of Root-Nodule Bacteria. IBP Handbook 15 Oxford: Blackwell Scientific Publications Oxford;
    [Google Scholar]
  39. Vincze E., Bowra S. ( 2006). Transformation of Rhizobia with broad-host-range plasmids by using a freeze-thaw method. Appl Environ Microbiol 72:2290–2293 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.058370-0
Loading
/content/journal/micro/10.1099/mic.0.058370-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed