1887

Abstract

species have been developed as excellent model organisms to address fundamental questions of archaeal biology. Interesting patterns of natural variation among strains have been identified through genome sequencing. Experimentally testing hypotheses about the biological causes and consequences of this natural variation requires genetic tools that apply to a diversity of strains. Previously, a genetic transformation system for was reported, in which overexpression of the 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase gene on the shuttle vector pSSR allowed the selection of transformants resistant to high concentrations of the thermostable antibiotic simvastatin. Here, we developed a novel gene knockout system based on simvastatin resistance. With this system, we created via homologous recombination an in-frame, markerless deletion of the intact M.16.4 genes encoding orotidine-5′-monophosphate pyrophosphorylase (OPRTase) and orotidine-5′-monophosphate decarboxylase (OMPdecase), and a disruption of the gene encoding β-galactosidase. Phenotypic analyses of the mutants revealed that the deletion mutant lost the ability to synthesize uracil, and the deletion mutants exhibited a white colour after X-Gal staining, demonstrating that the β-galactosidase function was inactivated. Our data demonstrate efficient tools to generate gene knockouts in a broad range of wild-type strains.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.058289-0
2012-06-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/6/1513.html?itemId=/content/journal/micro/10.1099/mic.0.058289-0&mimeType=html&fmt=ahah

References

  1. Ajon M., Fröls S., van Wolferen M., Stoecker K., Teichmann D., Driessen A. J., Grogan D. W., Albers S. V., Schleper C.. ( 2011;). UV-inducible DNA exchange in hyperthermophilic archaea mediated by type IV pili. . Mol Microbiol 82:, 807–817. [CrossRef][PubMed]
    [Google Scholar]
  2. Albers S. V., Driessen A. J.. ( 2008;). Conditions for gene disruption by homologous recombination of exogenous DNA into the Sulfolobus solfataricus genome. . Archaea 2:, 145–149. [CrossRef][PubMed]
    [Google Scholar]
  3. Aravalli R. N., Garrett R. A.. ( 1997;). Shuttle vectors for hyperthermophilic archaea. . Extremophiles 1:, 183–192. [CrossRef][PubMed]
    [Google Scholar]
  4. Berkner S., Lipps G.. ( 2008;). Mutation and reversion frequencies of different Sulfolobus species and strains. . Extremophiles 12:, 263–270. [CrossRef][PubMed]
    [Google Scholar]
  5. Berkner S., Grogan D., Albers S. V., Lipps G.. ( 2007;). Small multicopy, non-integrative shuttle vectors based on the plasmid pRN1 for Sulfolobus acidocaldarius and Sulfolobus solfataricus, model organisms of the (cren-)archaea. . Nucleic Acids Res 35:, e88. [CrossRef][PubMed]
    [Google Scholar]
  6. Cadillo-Quiroz H., Didelot X., Held N. L., Herrera A., Darling A., Reno M. L., Krause D. J., Whitaker R. J.. ( 2012;). Patterns of gene flow define species of thermophilic Archaea. . PLoS Biol 10:, e1001265. [CrossRef][PubMed]
    [Google Scholar]
  7. Cannio R., Contursi P., Rossi M., Bartolucci S.. ( 1998;). An autonomously replicating transforming vector for Sulfolobus solfataricus. . J Bacteriol 180:, 3237–3240.[PubMed]
    [Google Scholar]
  8. Contursi P., Cannio R., Prato S., Fiorentino G., Rossi M., Bartolucci S.. ( 2003;). Development of a genetic system for hyperthermophilic Archaea: expression of a moderate thermophilic bacterial alcohol dehydrogenase gene in Sulfolobus solfataricus. . FEMS Microbiol Lett 218:, 115–120. [CrossRef][PubMed]
    [Google Scholar]
  9. Deng L., Zhu H., Chen Z., Liang Y. X., She Q.. ( 2009;). Unmarked gene deletion and host-vector system for the hyperthermophilic crenarchaeon Sulfolobus islandicus. . Extremophiles 13:, 735–746. [CrossRef][PubMed]
    [Google Scholar]
  10. Greve B., Jensen S., Brügger K., Zillig W., Garrett R. A.. ( 2004;). Genomic comparison of archaeal conjugative plasmids from Sulfolobus. . Archaea 1:, 231–239. [CrossRef][PubMed]
    [Google Scholar]
  11. Grogan D. W.. ( 1989;). Phenotypic characterization of the archaebacterial genus Sulfolobus: comparison of five wild-type strains. . J Bacteriol 171:, 6710–6719.[PubMed]
    [Google Scholar]
  12. Grogan D. W.. ( 2009;). Homologous recombination in Sulfolobus acidocaldarius: genetic assays and functional properties. . Biochem Soc Trans 37:, 88–91. [CrossRef][PubMed]
    [Google Scholar]
  13. Gudbergsdottir S., Deng L., Chen Z., Jensen J. V., Jensen L. R., She Q., Garrett R. A.. ( 2011;). Dynamic properties of the Sulfolobus CRISPR/Cas and CRISPR/Cmr systems when challenged with vector-borne viral and plasmid genes and protospacers. . Mol Microbiol 79:, 35–49. [CrossRef][PubMed]
    [Google Scholar]
  14. Guo L., Brügger K., Liu C., Shah S. A., Zheng H., Zhu Y., Wang S., Lillestøl R. K., Chen L. et al. ( 2011;). Genome analyses of Icelandic strains of Sulfolobus islandicus, model organisms for genetic and virus–host interaction studies. . J Bacteriol 193:, 1672–1680. [CrossRef][PubMed]
    [Google Scholar]
  15. Held N. L., Whitaker R. J.. ( 2009;). Viral biogeography revealed by signatures in Sulfolobus islandicus genomes. . Environ Microbiol 11:, 457–466. [CrossRef][PubMed]
    [Google Scholar]
  16. Held N. L., Herrera A., Cadillo-Quiroz H., Whitaker R. J.. ( 2010;). CRISPR associated diversity within a population of Sulfolobus islandicus. . PLoS ONE 5:, e12988. [CrossRef][PubMed]
    [Google Scholar]
  17. Keeling P. J., Klenk H. P., Singh R. K., Feeley O., Schleper C., Zillig W., Doolittle W. F., Sensen C. W.. ( 1996;). Complete nucleotide sequence of the Sulfolobus islandicus multicopy plasmid pRN1. . Plasmid 35:, 141–144. [CrossRef][PubMed]
    [Google Scholar]
  18. Keeling P. J., Klenk H. P., Singh R. K., Schenk M. E., Sensen C. W., Zillig W., Doolittle W. F.. ( 1998;). Sulfolobus islandicus plasmids pRN1 and pRN2 share distant but common evolutionary ancestry. . Extremophiles 2:, 391–393. [CrossRef][PubMed]
    [Google Scholar]
  19. Li X., Guo L., Deng L., Feng D., Ren Y., Chu Y., She Q., Huang L.. ( 2011;). Deletion of the topoisomerase III gene in the hyperthermophilic archaeon Sulfolobus islandicus results in slow growth and defects in cell cycle control. . J Genet Genomics 38:, 253–259. [CrossRef][PubMed]
    [Google Scholar]
  20. Lipscomb G. L., Stirrett K., Schut G. J., Yang F., Jenney F. E. Jr, Scott R. A., Adams M. W., Westpheling J.. ( 2011;). Natural competence in the hyperthermophilic archaeon Pyrococcus furiosus facilitates genetic manipulation: construction of markerless deletions of genes encoding the two cytoplasmic hydrogenases. . Appl Environ Microbiol 77:, 2232–2238. [CrossRef][PubMed]
    [Google Scholar]
  21. Maezato Y., Dana K., Blum P.. ( 2011a;). Engineering thermoacidophilic archaea using linear DNA recombination. . Methods Mol Biol 765:, 435–445. [CrossRef][PubMed]
    [Google Scholar]
  22. Maezato Y., Daugherty A., Dana K., Soo E., Cooper C., Tachdjian S., Kelly R. M., Blum P.. ( 2011b;). VapC6, a ribonucleolytic toxin regulates thermophilicity in the crenarchaeote Sulfolobus solfataricus. . RNA 17:, 1381–1392. [CrossRef][PubMed]
    [Google Scholar]
  23. Manica A., Zebec Z., Teichmann D., Schleper C.. ( 2011;). In vivo activity of CRISPR-mediated virus defence in a hyperthermophilic archaeon. . Mol Microbiol 80:, 481–491. [CrossRef][PubMed]
    [Google Scholar]
  24. Matsumi R., Manabe K., Fukui T., Atomi H., Imanaka T.. ( 2007;). Disruption of a sugar transporter gene cluster in a hyperthermophilic archaeon using a host-marker system based on antibiotic resistance. . J Bacteriol 189:, 2683–2691. [CrossRef][PubMed]
    [Google Scholar]
  25. Prangishvili D., Stedman K., Zillig W.. ( 2001;). Viruses of the extremely thermophilic archaeon Sulfolobus. . Trends Microbiol 9:, 39–43. [CrossRef][PubMed]
    [Google Scholar]
  26. Redder P., Peng X., Brügger K., Shah S. A., Roesch F., Greve B., She Q., Schleper C., Forterre P. et al. ( 2009;). Four newly isolated fuselloviruses from extreme geothermal environments reveal unusual morphologies and a possible interviral recombination mechanism. . Environ Microbiol 11:, 2849–2862. [CrossRef][PubMed]
    [Google Scholar]
  27. Reno M. L., Held N. L., Fields C. J., Burke P. V., Whitaker R. J.. ( 2009;). Biogeography of the Sulfolobus islandicus pan-genome. . Proc Natl Acad Sci U S A 106:, 8605–8610. [CrossRef][PubMed]
    [Google Scholar]
  28. Sakofsky C. J., Runck L. A., Grogan D. W.. ( 2011;). Sulfolobus mutants, generated via PCR products, which lack putative enzymes of UV photoproduct repair. . Archaea 2011:, 864015. [CrossRef][PubMed]
    [Google Scholar]
  29. Santangelo T. J., Cubonová L., Reeve J. N.. ( 2008;). Shuttle vector expression in Thermococcus kodakaraensis: contributions of cis elements to protein synthesis in a hyperthermophilic archaeon. . Appl Environ Microbiol 74:, 3099–3104. [CrossRef][PubMed]
    [Google Scholar]
  30. Sato T., Fukui T., Atomi H., Imanaka T.. ( 2003;). Targeted gene disruption by homologous recombination in the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. . J Bacteriol 185:, 210–220. [CrossRef][PubMed]
    [Google Scholar]
  31. Sato T., Fukui T., Atomi H., Imanaka T.. ( 2005;). Improved and versatile transformation system allowing multiple genetic manipulations of the hyperthermophilic archaeon Thermococcus kodakaraensis. . Appl Environ Microbiol 71:, 3889–3899. [CrossRef][PubMed]
    [Google Scholar]
  32. Schelert J., Dixit V., Hoang V., Simbahan J., Drozda M., Blum P.. ( 2004;). Occurrence and characterization of mercury resistance in the hyperthermophilic archaeon Sulfolobus solfataricus by use of gene disruption. . J Bacteriol 186:, 427–437. [CrossRef][PubMed]
    [Google Scholar]
  33. Waege I., Schmid G., Thumann S., Thomm M., Hausner W.. ( 2010;). Shuttle vector-based transformation system for Pyrococcus furiosus. . Appl Environ Microbiol 76:, 3308–3313. [CrossRef][PubMed]
    [Google Scholar]
  34. Whitaker R. J., Grogan D. W., Taylor J. W.. ( 2003;). Geographic barriers isolate endemic populations of hyperthermophilic archaea. . Science 301:, 976–978. [CrossRef][PubMed]
    [Google Scholar]
  35. Worthington P., Hoang V., Perez-Pomares F., Blum P.. ( 2003;). Targeted disruption of the α-amylase gene in the hyperthermophilic archaeon Sulfolobus solfataricus. . J Bacteriol 185:, 482–488. [CrossRef][PubMed]
    [Google Scholar]
  36. Zhang C., Guo L., Deng L., Wu Y., Liang Y., Huang L., She Q.. ( 2010;). Revealing the essentiality of multiple archaeal pcna genes using a mutant propagation assay based on an improved knockout method. . Microbiology 156:, 3386–3397. [CrossRef][PubMed]
    [Google Scholar]
  37. Zheng T., Huang Q., Zhang C., Ni J., She Q., Shen Y.. ( 2012;). Development of a simvastatin selection marker for a hyperthermophilic acidophile, Sulfolobus islandicus. . Appl Environ Microbiol 78:, 568–574. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.058289-0
Loading
/content/journal/micro/10.1099/mic.0.058289-0
Loading

Data & Media loading...

Supplements

Table S1 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error