1887

Abstract

F1 is unable to grow on styrene due to the accumulation of 3-vinylcatechol, a toxic metabolite that is produced through the toluene degradation () pathway and causes catechol-2,3-dioxygenase (C23O) inactivation. In this study, we characterized a spontaneous F1 mutant, designated SF1, which acquired the ability to grow on styrene and did not accumulate 3-vinylcatechol. Whereas adaptation to new aromatic substrates has typically been shown to involve increased C23O activity or the acquisition of resistance to C23O inactivation, SF1 retained wild-type C23O activity. Surprisingly, SF1 grew more slowly on toluene, its native substrate, and exhibited reduced toluene dioxygenase (TDO) activity (approximately 50 % of that of F1), the enzyme responsible for ring hydroxylation and subsequent production of 3-vinylcatechol. DNA sequence analysis of the operon of SF1 revealed a single base pair mutation in (C479T), a gene encoding the reductase component of TDO. Replacement of the wild-type allele in F1 with reduced TDO activity to SF1 levels, obviated vinylcatechol accumulation, and conferred the ability to grow on styrene. This novel ‘less is more’ strategy – reduced catechol production as a means to expand growth substrate range – sheds light on an alternative approach for managing catechol toxicity during the metabolism of aromatic compounds.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.058230-0
2012-11-01
2019-12-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/11/2781.html?itemId=/content/journal/micro/10.1099/mic.0.058230-0&mimeType=html&fmt=ahah

References

  1. Bartels I., Knackmuss H. J., Reineke W.. ( 1984;). Suicide inactivation of catechol 2,3-dioxygenase from Pseudomonas putida mt-2 by 3-halocatechols. . Appl Environ Microbiol 47:, 500–505.[PubMed]
    [Google Scholar]
  2. Busch A., Lacal J., Martos A., Ramos J. L., Krell T.. ( 2007;). Bacterial sensor kinase TodS interacts with agonistic and antagonistic signals. . Proc Natl Acad Sci U S A 104:, 13774–13779. [CrossRef][PubMed]
    [Google Scholar]
  3. Cao B., Nagarajan K., Loh K. C.. ( 2009;). Biodegradation of aromatic compounds: current status and opportunities for biomolecular approaches. . Appl Microbiol Biotechnol 85:, 207–228. [CrossRef][PubMed]
    [Google Scholar]
  4. Cerdan P., Wasserfallen A., Rekik M., Timmis K. N., Harayama S.. ( 1994;). Substrate specificity of catechol 2,3-dioxygenase encoded by TOL plasmid pWW0 of Pseudomonas putida and its relationship to cell growth. . J Bacteriol 176:, 6074–6081.[PubMed]
    [Google Scholar]
  5. Cerdan P., Rekik M., Harayama S.. ( 1995;). Substrate specificity differences between two catechol 2,3-dioxygenases encoded by the TOL and NAH plasmids from Pseudomonas putida. . Eur J Biochem 229:, 113–118. [CrossRef][PubMed]
    [Google Scholar]
  6. Choi E. N., Cho M. C., Kim Y., Kim C. K., Lee K.. ( 2003;). Expansion of growth substrate range in Pseudomonas putida F1 by mutations in both cymR and todS, which recruit a ring-fission hydrolase CmtE and induce the tod catabolic operon, respectively. . Microbiology 149:, 795–805. [CrossRef][PubMed]
    [Google Scholar]
  7. de Lorenzo V., Timmis K. N.. ( 1994;). Analysis and construction of stable phenotypes in Gram-negative bacteria with Tn5- and Tn10-derived minitransposons. . Methods Enzymol 235:, 386–405. [CrossRef][PubMed]
    [Google Scholar]
  8. Díaz E.. ( 2004;). Bacterial degradation of aromatic pollutants: a paradigm of metabolic versatility. . Int Microbiol 7:, 173–180.[PubMed]
    [Google Scholar]
  9. Evans R. A., Parr W. H., Evans W. C.. ( 1949;). The bacterial oxidation of aromatic compounds. . Biochem J 44:, viii.[PubMed]
    [Google Scholar]
  10. Focht D. D.. ( 1994;). Microbial procedures for biodegradation research. . In Methods of Soil Analysis: Part 2, Microbiological and Biochemical Properties, pp. 407–426. Edited by Weaver R. W., Angle J. S., Bottomley P. S... Madison, WI:: Soil Science Society of America;.
    [Google Scholar]
  11. Friemann R., Lee K., Brown E. N., Gibson D. T., Eklund H., Ramaswamy S.. ( 2009;). Structures of the multicomponent Rieske non-heme iron toluene 2,3-dioxygenase enzyme system. . Acta Crystallogr D Biol Crystallogr 65:, 24–33. [CrossRef][PubMed]
    [Google Scholar]
  12. George K. W., Hay A. G.. ( 2011;). Bacterial strategies for growth on aromatic compounds. . Adv Appl Microbiol 74:, 1–33. [CrossRef][PubMed]
    [Google Scholar]
  13. George K. W., Kagle J., Junker L., Risen A., Hay A. G.. ( 2011;). Growth of Pseudomonas putida F1 on styrene requires increased catechol-2,3-dioxygenase activity, not a new hydrolase. . Microbiology 157:, 89–98. [CrossRef][PubMed]
    [Google Scholar]
  14. Gibson D. T., Subramanian Z.. ( 1984;). Microbial degradation of aromatic hydrocarbons. . In Microbial Degradation of Aromatic Compounds, pp. 181–252. Edited by Gibson D. T... New York:: Marcel Dekker;.
    [Google Scholar]
  15. Gibson D. T., Koch J. R., Kallio R. E.. ( 1968;). Oxidative degradation of aromatic hydrocarbons by microorganisms. I. Enzymatic formation of catechol from benzene. . Biochemistry 7:, 2653–2662. [CrossRef][PubMed]
    [Google Scholar]
  16. Gibson D. T., Hensley M., Yoshioka H., Mabry T. J.. ( 1970;). Oxidative degradation of aromatic hydrocarbons by microorganisms. III. Formation of (+)-cis-2,3-dihydroxy-1-methylcyclohexa-4,6-diene from toluene by Pseudomonas putida. . Biochemistry 9:, 1626–1630. [CrossRef][PubMed]
    [Google Scholar]
  17. Harayama S., Rekik M.. ( 1989;). Bacterial aromatic ring-cleavage enzymes are classified into two different gene families. . J Biol Chem 264:, 15328–15333.[PubMed]
    [Google Scholar]
  18. Hugo N., Armengaud J., Gaillard J., Timmis K. N., Jouanneau Y.. ( 1998;). A novel [2Fe–2S] ferredoxin from Pseudomonas putida mt2 promotes the reductive reactivation of catechol 2,3-dioxygenase. . J Biol Chem 273:, 9622–9629. [CrossRef][PubMed]
    [Google Scholar]
  19. Hugo N., Meyer C., Armengaud J., Gaillard J., Timmis K. N., Jouanneau Y.. ( 2000;). Characterization of three XylT-like [2Fe–2S] ferredoxins associated with catabolism of cresols or naphthalene: evidence for their involvement in catechol dioxygenase reactivation. . J Bacteriol 182:, 5580–5585. [CrossRef][PubMed]
    [Google Scholar]
  20. Kaniga K., Delor I., Cornelis G. R.. ( 1991;). A wide-host-range suicide vector for improving reverse genetics in Gram-negative bacteria: inactivation of the blaA gene of Yersinia enterocolitica. . Gene 109:, 137–141. [CrossRef][PubMed]
    [Google Scholar]
  21. Klecka G. M., Gibson D. T.. ( 1981;). Inhibition of catechol 2,3-dioxygenase from Pseudomonas putida by 3-chlorocatechol. . Appl Environ Microbiol 41:, 1159–1165.[PubMed]
    [Google Scholar]
  22. Kovach M. E., Elzer P. H., Hill D. S., Robertson G. T., Farris M. A., Roop R. M. II, Peterson K. M.. ( 1995;). Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. . Gene 166:, 175–176. [CrossRef][PubMed]
    [Google Scholar]
  23. Lacal J., Busch A., Guazzaroni M. E., Krell T., Ramos J. L.. ( 2006;). The TodS–TodT two-component regulatory system recognizes a wide range of effectors and works with DNA-bending proteins. . Proc Natl Acad Sci U S A 103:, 8191–8196. [CrossRef][PubMed]
    [Google Scholar]
  24. Lacal J., Guazzaroni M. E., Busch A., Krell T., Ramos J. L.. ( 2008;). Hierarchical binding of the TodT response regulator to its multiple recognition sites at the tod pathway operon promoter. . J Mol Biol 376:, 325–337. [CrossRef][PubMed]
    [Google Scholar]
  25. Laemmli C. M., Leveau J. H. J., Zehnder A. J. B., van der Meer J. R.. ( 2000;). Characterization of a second tfd gene cluster for chlorophenol and chlorocatechol metabolism on plasmid pJP4 in Ralstonia eutropha JMP134(pJP4). . J Bacteriol 182:, 4165–4172. [CrossRef][PubMed]
    [Google Scholar]
  26. Lau P. C., Wang Y., Patel A., Labbé D., Bergeron H., Brousseau R., Konishi Y., Rawlings M.. ( 1997;). A bacterial basic region leucine zipper histidine kinase regulating toluene degradation. . Proc Natl Acad Sci U S A 94:, 1453–1458. [CrossRef][PubMed]
    [Google Scholar]
  27. Lee K., Ryu E. K., Choi K. S., Cho M. C., Jeong J. J., Choi E. N., Lee S. O., Yoon D. Y., Hwang I., Kim C. K.. ( 2006;). Identification and expression of the cym, cmt, and tod catabolic genes from Pseudomonas putida KL47: expression of the regulatory todST genes as a factor for catabolic adaptation. . J Microbiol 44:, 192–199.[PubMed]
    [Google Scholar]
  28. Metcalf W. W., Jiang W., Daniels L. L., Kim S. K., Haldimann A., Wanner B. L.. ( 1996;). Conditionally replicative and conjugative plasmids carrying lacZα for cloning, mutagenesis, and allele replacement in bacteria. . Plasmid 35:, 1–13. [CrossRef][PubMed]
    [Google Scholar]
  29. Miller W. G., Leveau J. H., Lindow S. E.. ( 2000;). Improved gfp and inaZ broad-host-range promoter-probe vectors. . Mol Plant Microbe Interact 13:, 1243–1250. [CrossRef][PubMed]
    [Google Scholar]
  30. Mosqueda G., Ramos-González M. I., Ramos J. L.. ( 1999;). Toluene metabolism by the solvent-tolerant Pseudomonas putida DOT-T1 strain, and its role in solvent impermeabilization. . Gene 232:, 69–76. [CrossRef][PubMed]
    [Google Scholar]
  31. Müller T. A., Werlen C., Spain J., Van Der Meer J. R.. ( 2003;). Evolution of a chlorobenzene degradative pathway among bacteria in a contaminated groundwater mediated by a genomic island in Ralstonia. . Environ Microbiol 5:, 163–173. [CrossRef][PubMed]
    [Google Scholar]
  32. Park W., Madsen E. L.. ( 2004;). Characterization in Pseudomonas putida Cg1 of nahR and its role in bacterial survival in soil. . Appl Microbiol Biotechnol 66:, 209–216. [CrossRef][PubMed]
    [Google Scholar]
  33. Park D. W., Chae J. C., Kim Y., Iida T., Kudo T., Kim C. K.. ( 2002;). Chloroplast-type ferredoxin involved in reactivation of catechol 2,3-dioxygenase from Pseudomonas sp. S 47. . J Biochem Mol Biol 35:, 432–436. [CrossRef][PubMed]
    [Google Scholar]
  34. Park W., Jeon C. O., Cadillo H., DeRito C., Madsen E. L.. ( 2004;). Survival of naphthalene-degrading Pseudomonas putida NCIB 9816-4 in naphthalene-amended soils: toxicity of naphthalene and its metabolites. . Appl Microbiol Biotechnol 64:, 429–435. [CrossRef][PubMed]
    [Google Scholar]
  35. Pérez-Pantoja D., Ledger T., Pieper D. H., González B.. ( 2003;). Efficient turnover of chlorocatechols is essential for growth of Ralstonia eutropha JMP134(pJP4) in 3-chlorobenzoic acid. . J Bacteriol 185:, 1534–1542. [CrossRef][PubMed]
    [Google Scholar]
  36. Polissi A., Harayama S.. ( 1993;). In vivo reactivation of catechol 2,3-dioxygenase mediated by a chloroplast-type ferredoxin: a bacterial strategy to expand the substrate specificity of aromatic degradative pathways. . EMBO J 12:, 3339–3347.[PubMed]
    [Google Scholar]
  37. Ramos J. L., Wasserfallen A., Rose K., Timmis K. N.. ( 1987;). Redesigning metabolic routes: manipulation of TOL plasmid pathway for catabolism of alkylbenzoates. . Science 235:, 593–596. [CrossRef][PubMed]
    [Google Scholar]
  38. Rojo F., Pieper D. H., Engesser K. H., Knackmuss H. J., Timmis K. N.. ( 1987;). Assemblage of ortho cleavage route for simultaneous degradation of chloro- and methylaromatics. . Science 238:, 1395–1398. [CrossRef][PubMed]
    [Google Scholar]
  39. Sala-Trepat J. M., Evans W. C.. ( 1971;). The meta cleavage of catechol by Azotobacter species. 4-Oxalocrotonate pathway. . Eur J Biochem 20:, 400–413. [CrossRef][PubMed]
    [Google Scholar]
  40. Schweigert N., Hunziker R. W., Escher B. I., Eggen R. I. L.. ( 2001a;). Acute toxicity of (chloro-)catechols and (chloro-)catechol-copper combinations in Escherichia coli corresponds to their membrane toxicity in vitro. . Environ Toxicol Chem 20:, 239–247.[PubMed]
    [Google Scholar]
  41. Schweigert N., Zehnder A. J. B., Eggen R. I. L.. ( 2001b;). Chemical properties of catechols and their molecular modes of toxic action in cells, from microorganisms to mammals. . Environ Microbiol 3:, 81–91. [CrossRef][PubMed]
    [Google Scholar]
  42. Seah S. Y. K., Terracina G., Bolin J. T., Riebel P., Snieckus V., Eltis L. D.. ( 1998;). Purification and preliminary characterization of a serine hydrolase involved in the microbial degradation of polychlorinated biphenyls. . J Biol Chem 273:, 22943–22949. [CrossRef][PubMed]
    [Google Scholar]
  43. Stanier R. Y.. ( 1948;). The oxidation of aromatic compounds by fluorescent pseudomonads. . J Bacteriol 55:, 477–494.
    [Google Scholar]
  44. Trefault N., De la Iglesia R., Molina A. M., Manzano M., Ledger T., Pérez-Pantoja D., Sánchez M. A., Stuardo M., González B.. ( 2004;). Genetic organization of the catabolic plasmid pJP4 from Ralstonia eutropha JMP134 (pJP4) reveals mechanisms of adaptation to chloroaromatic pollutants and evolution of specialized chloroaromatic degradation pathways. . Environ Microbiol 6:, 655–668. [CrossRef][PubMed]
    [Google Scholar]
  45. Vaillancourt F. H., Labbe G., Drouin N. M., Fortin P. D., Eltis L. D.. ( 2002;). The mechanism-based inactivation of 2,3-dihydroxybiphenyl 1,2-dioxygenase by catecholic substrates. . J Biol Chem 277:, 2019–2027. [CrossRef][PubMed]
    [Google Scholar]
  46. Vaillancourt F. H., Fortin P. D., Labbé G., Drouin N. M., Karim Z., Agar N. Y. R., Eltis L. D.. ( 2005;). Molecular basis for the substrate selectivity of bicyclic and monocyclic extradiol dioxygenases. . Biochem Biophys Res Commun 338:, 215–222. [CrossRef][PubMed]
    [Google Scholar]
  47. Vaillancourt F. H., Bolin J. T., Eltis L. D.. ( 2006;). The ins and outs of ring-cleaving dioxygenases. . Crit Rev Biochem Mol Biol 41:, 241–267. [CrossRef][PubMed]
    [Google Scholar]
  48. van der Meer J. R., de Vos W. M., Harayama S., Zehnder A. J.. ( 1992;). Molecular mechanisms of genetic adaptation to xenobiotic compounds. . Microbiol Rev 56:, 677–694.[PubMed]
    [Google Scholar]
  49. van der Meer J. R. Jr, Werlen C., Nishino S. F., Spain J. C.. ( 1998;). Evolution of a pathway for chlorobenzene metabolism leads to natural attenuation in contaminated groundwater. . Appl Environ Microbiol 64:, 4185–4193.[PubMed]
    [Google Scholar]
  50. Ward G., Parales R. E., Dosoretz C. G.. ( 2004;). Biocatalytic synthesis of polycatechols from toxic aromatic compounds. . Environ Sci Technol 38:, 4753–4757. [CrossRef][PubMed]
    [Google Scholar]
  51. Woo H. J., Sanseverino J., Cox C. D., Robinson K. G., Sayler G. S.. ( 2000;). The measurement of toluene dioxygenase activity in biofilm culture of Pseudomonas putida F1. . J Microbiol Methods 40:, 181–191. [CrossRef][PubMed]
    [Google Scholar]
  52. Zylstra G. J., Gibson D. T.. ( 1989;). Toluene degradation by Pseudomonas putida F1. Nucleotide sequence of the todC1C2BADE genes and their expression in Escherichia coli. . J Biol Chem 264:, 14940–14946.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.058230-0
Loading
/content/journal/micro/10.1099/mic.0.058230-0
Loading

Data & Media loading...

Supplements

Figs S1 and S2 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error