1887

Abstract

F1 is unable to grow on styrene due to the accumulation of 3-vinylcatechol, a toxic metabolite that is produced through the toluene degradation () pathway and causes catechol-2,3-dioxygenase (C23O) inactivation. In this study, we characterized a spontaneous F1 mutant, designated SF1, which acquired the ability to grow on styrene and did not accumulate 3-vinylcatechol. Whereas adaptation to new aromatic substrates has typically been shown to involve increased C23O activity or the acquisition of resistance to C23O inactivation, SF1 retained wild-type C23O activity. Surprisingly, SF1 grew more slowly on toluene, its native substrate, and exhibited reduced toluene dioxygenase (TDO) activity (approximately 50 % of that of F1), the enzyme responsible for ring hydroxylation and subsequent production of 3-vinylcatechol. DNA sequence analysis of the operon of SF1 revealed a single base pair mutation in (C479T), a gene encoding the reductase component of TDO. Replacement of the wild-type allele in F1 with reduced TDO activity to SF1 levels, obviated vinylcatechol accumulation, and conferred the ability to grow on styrene. This novel ‘less is more’ strategy – reduced catechol production as a means to expand growth substrate range – sheds light on an alternative approach for managing catechol toxicity during the metabolism of aromatic compounds.

Funding
This study was supported by the:
  • Paracelsian fund
  • New York State Center for Advanced Technology
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.058230-0
2012-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/11/2781.html?itemId=/content/journal/micro/10.1099/mic.0.058230-0&mimeType=html&fmt=ahah

References

  1. Bartels I., Knackmuss H. J., Reineke W. ( 1984). Suicide inactivation of catechol 2,3-dioxygenase from Pseudomonas putida mt-2 by 3-halocatechols. Appl Environ Microbiol 47:500–505 [PubMed]
    [Google Scholar]
  2. Busch A., Lacal J., Martos A., Ramos J. L., Krell T. ( 2007). Bacterial sensor kinase TodS interacts with agonistic and antagonistic signals. Proc Natl Acad Sci U S A 104:13774–13779 [View Article] [PubMed]
    [Google Scholar]
  3. Cao B., Nagarajan K., Loh K. C. ( 2009). Biodegradation of aromatic compounds: current status and opportunities for biomolecular approaches. Appl Microbiol Biotechnol 85:207–228 [View Article] [PubMed]
    [Google Scholar]
  4. Cerdan P., Wasserfallen A., Rekik M., Timmis K. N., Harayama S. ( 1994). Substrate specificity of catechol 2,3-dioxygenase encoded by TOL plasmid pWW0 of Pseudomonas putida and its relationship to cell growth. J Bacteriol 176:6074–6081 [PubMed]
    [Google Scholar]
  5. Cerdan P., Rekik M., Harayama S. ( 1995). Substrate specificity differences between two catechol 2,3-dioxygenases encoded by the TOL and NAH plasmids from Pseudomonas putida . Eur J Biochem 229:113–118 [View Article] [PubMed]
    [Google Scholar]
  6. Choi E. N., Cho M. C., Kim Y., Kim C. K., Lee K. ( 2003). Expansion of growth substrate range in Pseudomonas putida F1 by mutations in both cymR and todS, which recruit a ring-fission hydrolase CmtE and induce the tod catabolic operon, respectively. Microbiology 149:795–805 [View Article] [PubMed]
    [Google Scholar]
  7. de Lorenzo V., Timmis K. N. ( 1994). Analysis and construction of stable phenotypes in Gram-negative bacteria with Tn5- and Tn10-derived minitransposons. Methods Enzymol 235:386–405 [View Article] [PubMed]
    [Google Scholar]
  8. Díaz E. ( 2004). Bacterial degradation of aromatic pollutants: a paradigm of metabolic versatility. Int Microbiol 7:173–180 [PubMed]
    [Google Scholar]
  9. Evans R. A., Parr W. H., Evans W. C. ( 1949). The bacterial oxidation of aromatic compounds. Biochem J 44:viii [PubMed]
    [Google Scholar]
  10. Focht D. D. ( 1994). Microbial procedures for biodegradation research. Methods of Soil Analysis: Part 2, Microbiological and Biochemical Properties407–426 Weaver R. W., Angle J. S., Bottomley P. S. Madison, WI: Soil Science Society of America;
    [Google Scholar]
  11. Friemann R., Lee K., Brown E. N., Gibson D. T., Eklund H., Ramaswamy S. ( 2009). Structures of the multicomponent Rieske non-heme iron toluene 2,3-dioxygenase enzyme system. Acta Crystallogr D Biol Crystallogr 65:24–33 [View Article] [PubMed]
    [Google Scholar]
  12. George K. W., Hay A. G. ( 2011). Bacterial strategies for growth on aromatic compounds. Adv Appl Microbiol 74:1–33 [View Article] [PubMed]
    [Google Scholar]
  13. George K. W., Kagle J., Junker L., Risen A., Hay A. G. ( 2011). Growth of Pseudomonas putida F1 on styrene requires increased catechol-2,3-dioxygenase activity, not a new hydrolase. Microbiology 157:89–98 [View Article] [PubMed]
    [Google Scholar]
  14. Gibson D. T., Subramanian Z. ( 1984). Microbial degradation of aromatic hydrocarbons. Microbial Degradation of Aromatic Compounds181–252 Gibson D. T. New York: Marcel Dekker;
    [Google Scholar]
  15. Gibson D. T., Koch J. R., Kallio R. E. ( 1968). Oxidative degradation of aromatic hydrocarbons by microorganisms. I. Enzymatic formation of catechol from benzene. Biochemistry 7:2653–2662 [View Article] [PubMed]
    [Google Scholar]
  16. Gibson D. T., Hensley M., Yoshioka H., Mabry T. J. ( 1970). Oxidative degradation of aromatic hydrocarbons by microorganisms. III. Formation of (+)-cis-2,3-dihydroxy-1-methylcyclohexa-4,6-diene from toluene by Pseudomonas putida . Biochemistry 9:1626–1630 [View Article] [PubMed]
    [Google Scholar]
  17. Harayama S., Rekik M. ( 1989). Bacterial aromatic ring-cleavage enzymes are classified into two different gene families. J Biol Chem 264:15328–15333 [PubMed]
    [Google Scholar]
  18. Hugo N., Armengaud J., Gaillard J., Timmis K. N., Jouanneau Y. ( 1998). A novel [2Fe–2S] ferredoxin from Pseudomonas putida mt2 promotes the reductive reactivation of catechol 2,3-dioxygenase. J Biol Chem 273:9622–9629 [View Article] [PubMed]
    [Google Scholar]
  19. Hugo N., Meyer C., Armengaud J., Gaillard J., Timmis K. N., Jouanneau Y. ( 2000). Characterization of three XylT-like [2Fe–2S] ferredoxins associated with catabolism of cresols or naphthalene: evidence for their involvement in catechol dioxygenase reactivation. J Bacteriol 182:5580–5585 [View Article] [PubMed]
    [Google Scholar]
  20. Kaniga K., Delor I., Cornelis G. R. ( 1991). A wide-host-range suicide vector for improving reverse genetics in Gram-negative bacteria: inactivation of the blaA gene of Yersinia enterocolitica . Gene 109:137–141 [View Article] [PubMed]
    [Google Scholar]
  21. Klecka G. M., Gibson D. T. ( 1981). Inhibition of catechol 2,3-dioxygenase from Pseudomonas putida by 3-chlorocatechol. Appl Environ Microbiol 41:1159–1165 [PubMed]
    [Google Scholar]
  22. Kovach M. E., Elzer P. H., Hill D. S., Robertson G. T., Farris M. A., Roop R. M. II, Peterson K. M. ( 1995). Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175–176 [View Article] [PubMed]
    [Google Scholar]
  23. Lacal J., Busch A., Guazzaroni M. E., Krell T., Ramos J. L. ( 2006). The TodS–TodT two-component regulatory system recognizes a wide range of effectors and works with DNA-bending proteins. Proc Natl Acad Sci U S A 103:8191–8196 [View Article] [PubMed]
    [Google Scholar]
  24. Lacal J., Guazzaroni M. E., Busch A., Krell T., Ramos J. L. ( 2008). Hierarchical binding of the TodT response regulator to its multiple recognition sites at the tod pathway operon promoter. J Mol Biol 376:325–337 [View Article] [PubMed]
    [Google Scholar]
  25. Laemmli C. M., Leveau J. H. J., Zehnder A. J. B., van der Meer J. R. ( 2000). Characterization of a second tfd gene cluster for chlorophenol and chlorocatechol metabolism on plasmid pJP4 in Ralstonia eutropha JMP134(pJP4). J Bacteriol 182:4165–4172 [View Article] [PubMed]
    [Google Scholar]
  26. Lau P. C., Wang Y., Patel A., Labbé D., Bergeron H., Brousseau R., Konishi Y., Rawlings M. ( 1997). A bacterial basic region leucine zipper histidine kinase regulating toluene degradation. Proc Natl Acad Sci U S A 94:1453–1458 [View Article] [PubMed]
    [Google Scholar]
  27. Lee K., Ryu E. K., Choi K. S., Cho M. C., Jeong J. J., Choi E. N., Lee S. O., Yoon D. Y., Hwang I., Kim C. K. ( 2006). Identification and expression of the cym, cmt, and tod catabolic genes from Pseudomonas putida KL47: expression of the regulatory todST genes as a factor for catabolic adaptation. J Microbiol 44:192–199 [PubMed]
    [Google Scholar]
  28. Metcalf W. W., Jiang W., Daniels L. L., Kim S. K., Haldimann A., Wanner B. L. ( 1996). Conditionally replicative and conjugative plasmids carrying lacZα for cloning, mutagenesis, and allele replacement in bacteria. Plasmid 35:1–13 [View Article] [PubMed]
    [Google Scholar]
  29. Miller W. G., Leveau J. H., Lindow S. E. ( 2000). Improved gfp and inaZ broad-host-range promoter-probe vectors. Mol Plant Microbe Interact 13:1243–1250 [View Article] [PubMed]
    [Google Scholar]
  30. Mosqueda G., Ramos-González M. I., Ramos J. L. ( 1999). Toluene metabolism by the solvent-tolerant Pseudomonas putida DOT-T1 strain, and its role in solvent impermeabilization. Gene 232:69–76 [View Article] [PubMed]
    [Google Scholar]
  31. Müller T. A., Werlen C., Spain J., Van Der Meer J. R. ( 2003). Evolution of a chlorobenzene degradative pathway among bacteria in a contaminated groundwater mediated by a genomic island in Ralstonia . Environ Microbiol 5:163–173 [View Article] [PubMed]
    [Google Scholar]
  32. Park W., Madsen E. L. ( 2004). Characterization in Pseudomonas putida Cg1 of nahR and its role in bacterial survival in soil. Appl Microbiol Biotechnol 66:209–216 [View Article] [PubMed]
    [Google Scholar]
  33. Park D. W., Chae J. C., Kim Y., Iida T., Kudo T., Kim C. K. ( 2002). Chloroplast-type ferredoxin involved in reactivation of catechol 2,3-dioxygenase from Pseudomonas sp. S 47. J Biochem Mol Biol 35:432–436 [View Article] [PubMed]
    [Google Scholar]
  34. Park W., Jeon C. O., Cadillo H., DeRito C., Madsen E. L. ( 2004). Survival of naphthalene-degrading Pseudomonas putida NCIB 9816-4 in naphthalene-amended soils: toxicity of naphthalene and its metabolites. Appl Microbiol Biotechnol 64:429–435 [View Article] [PubMed]
    [Google Scholar]
  35. Pérez-Pantoja D., Ledger T., Pieper D. H., González B. ( 2003). Efficient turnover of chlorocatechols is essential for growth of Ralstonia eutropha JMP134(pJP4) in 3-chlorobenzoic acid. J Bacteriol 185:1534–1542 [View Article] [PubMed]
    [Google Scholar]
  36. Polissi A., Harayama S. ( 1993). In vivo reactivation of catechol 2,3-dioxygenase mediated by a chloroplast-type ferredoxin: a bacterial strategy to expand the substrate specificity of aromatic degradative pathways. EMBO J 12:3339–3347 [PubMed]
    [Google Scholar]
  37. Ramos J. L., Wasserfallen A., Rose K., Timmis K. N. ( 1987). Redesigning metabolic routes: manipulation of TOL plasmid pathway for catabolism of alkylbenzoates. Science 235:593–596 [View Article] [PubMed]
    [Google Scholar]
  38. Rojo F., Pieper D. H., Engesser K. H., Knackmuss H. J., Timmis K. N. ( 1987). Assemblage of ortho cleavage route for simultaneous degradation of chloro- and methylaromatics. Science 238:1395–1398 [View Article] [PubMed]
    [Google Scholar]
  39. Sala-Trepat J. M., Evans W. C. ( 1971). The meta cleavage of catechol by Azotobacter species. 4-Oxalocrotonate pathway. Eur J Biochem 20:400–413 [View Article] [PubMed]
    [Google Scholar]
  40. Schweigert N., Hunziker R. W., Escher B. I., Eggen R. I. L. ( 2001a). Acute toxicity of (chloro-)catechols and (chloro-)catechol-copper combinations in Escherichia coli corresponds to their membrane toxicity in vitro. Environ Toxicol Chem 20:239–247 [PubMed]
    [Google Scholar]
  41. Schweigert N., Zehnder A. J. B., Eggen R. I. L. ( 2001b). Chemical properties of catechols and their molecular modes of toxic action in cells, from microorganisms to mammals. Environ Microbiol 3:81–91 [View Article] [PubMed]
    [Google Scholar]
  42. Seah S. Y. K., Terracina G., Bolin J. T., Riebel P., Snieckus V., Eltis L. D. ( 1998). Purification and preliminary characterization of a serine hydrolase involved in the microbial degradation of polychlorinated biphenyls. J Biol Chem 273:22943–22949 [View Article] [PubMed]
    [Google Scholar]
  43. Stanier R. Y. ( 1948). The oxidation of aromatic compounds by fluorescent pseudomonads. J Bacteriol 55:477–494
    [Google Scholar]
  44. Trefault N., De la Iglesia R., Molina A. M., Manzano M., Ledger T., Pérez-Pantoja D., Sánchez M. A., Stuardo M., González B. ( 2004). Genetic organization of the catabolic plasmid pJP4 from Ralstonia eutropha JMP134 (pJP4) reveals mechanisms of adaptation to chloroaromatic pollutants and evolution of specialized chloroaromatic degradation pathways. Environ Microbiol 6:655–668 [View Article] [PubMed]
    [Google Scholar]
  45. Vaillancourt F. H., Labbe G., Drouin N. M., Fortin P. D., Eltis L. D. ( 2002). The mechanism-based inactivation of 2,3-dihydroxybiphenyl 1,2-dioxygenase by catecholic substrates. J Biol Chem 277:2019–2027 [View Article] [PubMed]
    [Google Scholar]
  46. Vaillancourt F. H., Fortin P. D., Labbé G., Drouin N. M., Karim Z., Agar N. Y. R., Eltis L. D. ( 2005). Molecular basis for the substrate selectivity of bicyclic and monocyclic extradiol dioxygenases. Biochem Biophys Res Commun 338:215–222 [View Article] [PubMed]
    [Google Scholar]
  47. Vaillancourt F. H., Bolin J. T., Eltis L. D. ( 2006). The ins and outs of ring-cleaving dioxygenases. Crit Rev Biochem Mol Biol 41:241–267 [View Article] [PubMed]
    [Google Scholar]
  48. van der Meer J. R., de Vos W. M., Harayama S., Zehnder A. J. ( 1992). Molecular mechanisms of genetic adaptation to xenobiotic compounds. Microbiol Rev 56:677–694 [PubMed]
    [Google Scholar]
  49. van der Meer J. R. Jr, Werlen C., Nishino S. F., Spain J. C. ( 1998). Evolution of a pathway for chlorobenzene metabolism leads to natural attenuation in contaminated groundwater. Appl Environ Microbiol 64:4185–4193 [PubMed]
    [Google Scholar]
  50. Ward G., Parales R. E., Dosoretz C. G. ( 2004). Biocatalytic synthesis of polycatechols from toxic aromatic compounds. Environ Sci Technol 38:4753–4757 [View Article] [PubMed]
    [Google Scholar]
  51. Woo H. J., Sanseverino J., Cox C. D., Robinson K. G., Sayler G. S. ( 2000). The measurement of toluene dioxygenase activity in biofilm culture of Pseudomonas putida F1. J Microbiol Methods 40:181–191 [View Article] [PubMed]
    [Google Scholar]
  52. Zylstra G. J., Gibson D. T. ( 1989). Toluene degradation by Pseudomonas putida F1. Nucleotide sequence of the todC1C2BADE genes and their expression in Escherichia coli . J Biol Chem 264:14940–14946 [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.058230-0
Loading
/content/journal/micro/10.1099/mic.0.058230-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error