Amplification of the gene is associated with evolution of copper tolerance in Free

Abstract

In living organisms, copper (Cu) contributes to essential functions but at high concentrations it may elicit toxic effects. Cu-tolerant yeast strains are of relevance for both biotechnological applications and studying physiological and molecular mechanisms involved in stress resistance. One way to obtain tolerant strains is to exploit experimental methods that rely on the principles of natural evolution (evolutionary engineering) and allow for the development of complex phenotypic traits. However, in most cases, the molecular and physiological basis of the phenotypic changes produced have not yet been unravelled. We investigated the determinants of Cu resistance in a strain that was evolved to tolerate up to 2.5 g CuSO l in the culture medium. We found that the content of intracellular Cu and the expression levels of several genes encoding proteins involved in Cu metabolism and oxidative stress response were similar in the Cu-tolerant () and the Cu-sensitive () strain. The major difference detected in the two strains was the copy number of the gene , which encodes a metallothionein. In cells, a sevenfold amplification of was observed, accounting for its strongly and steadily increased expression. Our results implicate in protection of the cells against Cu toxicity. In these cells, robustness towards Cu is stably inheritable and can be reproducibly selected by controlling environmental conditions. This finding corroborates the effectiveness of laboratory evolution of whole cells as a tool to develop microbial strains for biotechnological applications.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.058024-0
2012-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/9/2325.html?itemId=/content/journal/micro/10.1099/mic.0.058024-0&mimeType=html&fmt=ahah

References

  1. Adamo G. M., Brocca S., Passolunghi S., Salvato B., Lotti M. ( 2012). Laboratory evolution of copper tolerant yeast strains. Microb Cell Fact 11:1 [View Article][PubMed]
    [Google Scholar]
  2. Bailey J. E. ( 1991). Toward a science of metabolic engineering. Science 252:1668–1675 [View Article][PubMed]
    [Google Scholar]
  3. Bailey J. E., Sburlati A., Hatzimanikatis V., Lee K., Renner W. A., Tsai P. S. ( 1996). Inverse metabolic engineering: A strategy for directed genetic engineering of useful phenotypes. Biotechnol Bioeng 52:109–121 [View Article][PubMed]
    [Google Scholar]
  4. Bannister J. V., Bannister W. H., Rotilio G. ( 1987). Aspects of the structure, function, and applications of superoxide dismutase. CRC Crit Rev Biochem 22:111–180 [View Article][PubMed]
    [Google Scholar]
  5. Bi W. X., Kong F., Hu X. Y., Cui X. ( 2007). Role of glutathione in detoxification of copper and cadmium by yeast cells having different abilities to express cup1 protein. Toxicol Mech Methods 17:371–378 [View Article][PubMed]
    [Google Scholar]
  6. Biebricher C. K., Eigen M. ( 2006). What is a quasispecies?. Curr Top Microbiol Immunol 299:1–31 [View Article][PubMed]
    [Google Scholar]
  7. Brown N. M., Torres A. S., Doan P. E., O’Halloran T. V. ( 2004). Oxygen and the copper chaperone CCS regulate posttranslational activation of Cu,Zn superoxide dismutase. Proc Natl Acad Sci U S A 101:5518–5523 [View Article][PubMed]
    [Google Scholar]
  8. Buchman C., Skroch P., Welch J., Fogel S., Karin M. ( 1989). The CUP2 gene product, regulator of yeast metallothionein expression, is a copper-activated DNA-binding protein. Mol Cell Biol 9:4091–4095[PubMed]
    [Google Scholar]
  9. Butler P. R., Brown M., Oliver S. G. ( 1996). Improvement of antibiotic titers from Streptomyces bacteria by interactive continuous selection. Biotechnol Bioeng 49:185–196 [View Article][PubMed]
    [Google Scholar]
  10. Butt T. R., Ecker D. J. ( 1987). Yeast metallothionein and applications in biotechnology. Microbiol Rev 51:351–364[PubMed]
    [Google Scholar]
  11. Çakar Z. P., Seker U. O., Tamerler C., Sonderegger M., Sauer U. ( 2005). Evolutionary engineering of multiple-stress resistant Saccharomyces cerevisiae . FEMS Yeast Res 5:569–578 [View Article][PubMed]
    [Google Scholar]
  12. Çakar Z. P., Alkim C., Turanli B., Tokman N., Akman S., Sarikaya M., Tamerler C., Benbadis L., François J. M. ( 2009). Isolation of cobalt hyper-resistant mutants of Saccharomyces cerevisiae by in vivo evolutionary engineering approach. J Biotechnol 143:130–138 [View Article][PubMed]
    [Google Scholar]
  13. Culotta V. C., Howard W. R., Liu X. F. ( 1994). CRS5 encodes a metallothionein-like protein in Saccharomyces cerevisiae . J Biol Chem 269:25295–25302[PubMed]
    [Google Scholar]
  14. Davies K. J. ( 1987). Protein damage and degradation by oxygen radicals. I. general aspects. J Biol Chem 262:9895–9901[PubMed]
    [Google Scholar]
  15. Ecker D. J., Butt T. R., Sternberg E. J., Neeper M. P., Debouck C., Gorman J. A., Crooke S. T. ( 1986). Yeast metallothionein function in metal ion detoxification. J Biol Chem 261:16895–16900[PubMed]
    [Google Scholar]
  16. Elena S. F., Lenski R. E. ( 2003). Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nat Rev Genet 4:457–469 [View Article][PubMed]
    [Google Scholar]
  17. Finch C. E., Goodman M. F. ( 1997). Relevance of ‘adaptive’ mutations arising in non-dividing cells of microorganisms to age-related changes in mutant phenotypes of neurons. Trends Neurosci 20:501–507[PubMed] [CrossRef]
    [Google Scholar]
  18. Fogel S., Welch J. W. ( 1982). Tandem gene amplification mediates copper resistance in yeast. Proc Natl Acad Sci U S A 79:5342–5346 [View Article][PubMed]
    [Google Scholar]
  19. Gadd G. M. ( 1993). Interaction of fungi with toxic metals. New Phytol 124:25–60 [View Article]
    [Google Scholar]
  20. Gharieb M. M., Gadd G. M. ( 2004). Role of glutathione in detoxification of metal(loid)s by Saccharomyces cerevisiae . Biometals 17:183–188 [View Article][PubMed]
    [Google Scholar]
  21. Gralla E. B., Thiele D. J., Silar P., Valentine J. S. ( 1991). ACE1, a copper-dependent transcription factor, activates expression of the yeast copper, zinc superoxide dismutase gene. Proc Natl Acad Sci U S A 88:8558–8562 [View Article][PubMed]
    [Google Scholar]
  22. Grant C. M. ( 2001). Role of the glutathione/glutaredoxin and thioredoxin systems in yeast growth and response to stress conditions. Mol Microbiol 39:533–541 [View Article][PubMed]
    [Google Scholar]
  23. Grant C. M. ( 2008). Metabolic reconfiguration is a regulated response to oxidative stress. J Biol 7:1 [View Article][PubMed]
    [Google Scholar]
  24. Gresham D., Desai M. M., Tucker C. M., Jenq H. T., Pai D. A., Ward A., DeSevo C. G., Botstein D., Dunham M. J. ( 2008). The repertoire and dynamics of evolutionary adaptations to controlled nutrient-limited environments in yeast. PLoS Genet 4:e1000303 [View Article][PubMed]
    [Google Scholar]
  25. Gross C., Kelleher M., Iyer V. R., Brown P. O., Winge D. R. ( 2000). Identification of the copper regulon in Saccharomyces cerevisiae by DNA microarrays. J Biol Chem 275:32310–32316 [View Article][PubMed]
    [Google Scholar]
  26. Guimarães P. M., François J., Parrou J. L., Teixeira J. A., Domingues L. ( 2008). Adaptive evolution of a lactose-consuming Saccharomyces cerevisiae recombinant. Appl Environ Microbiol 74:1748–1756 [View Article][PubMed]
    [Google Scholar]
  27. Hall B. G. ( 1995). Adaptive mutations in Escherichia coli as a model for the multiple mutational origins of tumors. Proc Natl Acad Sci U S A 92:5669–5673 [View Article][PubMed]
    [Google Scholar]
  28. Halliwell B., Gutteridge J. M. ( 1984). Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 219:1–14[PubMed]
    [Google Scholar]
  29. Hamer D. H., Thiele D. J., Lemontt J. E. ( 1985). Function and autoregulation of yeast copperthionein. Science 228:685–690 [View Article][PubMed]
    [Google Scholar]
  30. Harris R. S., Longerich S., Rosenberg S. M. ( 1994). Recombination in adaptive mutation. Science 264:258–260 [View Article][PubMed]
    [Google Scholar]
  31. Hassett R., Dix D. R., Eide D. J., Kosman D. J. ( 2000). The Fe(II) permease Fet4p functions as a low affinity copper transporter and supports normal copper trafficking in Saccharomyces cerevisiae . Biochem J 351:477–484 [View Article][PubMed]
    [Google Scholar]
  32. Hastings P. J., Lupski J. R., Rosenberg S. M., Ira G. ( 2009). Mechanisms of change in gene copy number. Nat Rev Genet 10:551–564 [View Article][PubMed]
    [Google Scholar]
  33. Hendrickson H., Slechta E. S., Bergthorsson U., Andersson D. I., Roth J. R. ( 2002). Amplification-mutagenesis: evidence that “directed” adaptive mutation and general hypermutability result from growth with a selected gene amplification. Proc Natl Acad Sci U S A 99:2164–2169 [View Article][PubMed]
    [Google Scholar]
  34. Hersh M. N., Ponder R. G., Hastings P. J., Rosenberg S. M. ( 2004). Adaptive mutation and amplification in Escherichia coli: two pathways of genome adaptation under stress. Res Microbiol 155:352–359 [View Article][PubMed]
    [Google Scholar]
  35. Jensen L. T., Howard W. R., Strain J. J., Winge D. R., Culotta V. C. ( 1996). Enhanced effectiveness of copper ion buffering by CUP1 metallothionein compared with CRS5 metallothionein in Saccharomyces cerevisiae . J Biol Chem 271:18514–18519 [View Article][PubMed]
    [Google Scholar]
  36. Kägi J. H. ( 1991). Overview of metallothionein. Methods Enzymol 205:613–626 [View Article][PubMed]
    [Google Scholar]
  37. Koller A., Valesco J., Subramani S. ( 2000). The CUP1 promoter of Saccharomyces cerevisiae is inducible by copper in Pichia pastoris . Yeast 16:651–656 [View Article][PubMed]
    [Google Scholar]
  38. Laemmli U. K. ( 1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [View Article][PubMed]
    [Google Scholar]
  39. Liti G., Carter D. M., Moses A. M., Warringer J., Parts L., James S. A., Davey R. P., Roberts I. N., Burt A. & other authors ( 2009). Population genomics of domestic and wild yeasts. Nature 458:337–341 [View Article][PubMed]
    [Google Scholar]
  40. Livak K. J., Schmittgen T. D. ( 2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt Method. Methods 25:402–408 [View Article][PubMed]
    [Google Scholar]
  41. Pagani A., Villarreal L., Capdevila M., Atrian S. ( 2007). The Saccharomyces cerevisiae Crs5 metallothionein metal-binding abilities and its role in the response to zinc overload. Mol Microbiol 63:256–269 [View Article][PubMed]
    [Google Scholar]
  42. Park J., Choi C. ( 2012). Contribution of mitochondrial network dynamics to intracellular ROS signaling. Commun Integr Biol 5:81–83[PubMed] [CrossRef]
    [Google Scholar]
  43. Peña M. M. O., Koch K. A., Thiele D. J. ( 1998). Dynamic regulation of copper uptake and detoxification genes in Saccharomyces cerevisiae . Mol Cell Biol 18:2514–2523[PubMed]
    [Google Scholar]
  44. Pena M. M., Puig S., Thiele D. J. ( 2000). Characterization of the Saccharomyces cerevisiae high affinity copper transporter Ctr3. J Biol Chem 275:33244–33251 [View Article][PubMed]
    [Google Scholar]
  45. Ralser M., Wamelink M. M., Kowald A., Gerisch B., Heeren G., Struys E. A., Klipp E., Jakobs C., Breitenbach M. & other authors ( 2007). Dynamic rerouting of the carbohydrate flux is key to counteracting oxidative stress. J Biol 6:10 [View Article][PubMed]
    [Google Scholar]
  46. Rees E. M., Lee J., Thiele D. J. ( 2004). Mobilization of intracellular copper stores by the ctr2 vacuolar copper transporter. J Biol Chem 279:54221–54229 [View Article][PubMed]
    [Google Scholar]
  47. Romandini P., Tallandini L., Beltramini M., Salvato B., Manzano M., de Bertoldi M., Rocco G. P. ( 1992). Effects of copper and cadmium on growth, superoxide dismutase and catalase activities in different yeast strains. Comp Biochem Physiol C 103:255–262 [View Article][PubMed]
    [Google Scholar]
  48. Rozen D. E., Skaletski H. J. ( 2000). Primer on the WWW for general users and for biologist programmers. Bioinformatics Methods and Protocols: Methods in Molecular Biology365–386 Misener S. K. S. Totowa, NJ: Humana Press; [View Article]
    [Google Scholar]
  49. Rozen D. E., de Visser J. A., Gerrish P. J. ( 2002). Fitness effects of fixed beneficial mutations in microbial populations. Curr Biol 12:1040–1045 [View Article][PubMed]
    [Google Scholar]
  50. Sambrook J., Fritsch E. F., Maniatis T. ( 2001). A Laboratory Manual, 3rd edn. New York: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  51. Sauer U. ( 2001). Evolutionary engineering of industrially important microbial phenotypes. Adv Biochem Eng Biotechnol 73:129–169[PubMed]
    [Google Scholar]
  52. Sedlak J., Lindsay R. H. ( 1968). Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem 25:192–205 [View Article][PubMed]
    [Google Scholar]
  53. Şen M., Yılmaz U., Baysal A., Akman S., Çakar Z. P. ( 2011). In vivo evolutionary engineering of a boron-resistant bacterium: Bacillus boroniphilus . Antonie van Leeuwenhoek 99:825–835 [View Article][PubMed]
    [Google Scholar]
  54. Shanmuganathan A., Avery S. V., Willetts S. A., Houghton J. E. ( 2004). Copper-induced oxidative stress in Saccharomyces cerevisiae targets enzymes of the glycolytic pathway. FEBS Lett 556:253–259 [View Article][PubMed]
    [Google Scholar]
  55. Solioz M., Vulpe C. ( 1996). CPx-type ATPases: a class of P-type ATPases that pump heavy metals. Trends Biochem Sci 21:237–241[PubMed] [CrossRef]
    [Google Scholar]
  56. Stadtman E. R., Levine R. L. ( 2006). Chemical modification of proteins by reactive oxygen species. Redox Proteomics: From Protein Modifications to Cellular Dysfunctions and Diseases3–23 Dalle Donne I., Scaloni A., Butterfield D. A. Hoboken, NJ: John Wiley and Sons; [View Article]
    [Google Scholar]
  57. Stohs S. J., Bagchi D. ( 1995). Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18:321–336 [View Article][PubMed]
    [Google Scholar]
  58. Strauss B. S. ( 1992). The origin of point mutations in human tumor cells. Cancer Res 52:249–253[PubMed]
    [Google Scholar]
  59. Stroobants A., Delroisse J. M., Delvigne F., Delva J., Portetelle D., Vandenbol M. ( 2009). Isolation and biomass production of a Saccharomyces cerevisiae strain binding copper and zinc ions. Appl Biochem Biotechnol 157:85–97 [View Article][PubMed]
    [Google Scholar]
  60. Szczypka M. S., Zhu Z., Silar P., Thiele D. J. ( 1997). Saccharomyces cerevisiae mutants altered in vacuole function are defective in copper detoxification and iron-responsive gene transcription. Yeast 13:1423–1435 [View Article][PubMed]
    [Google Scholar]
  61. van Maris A. J., Winkler A. A., Kuyper M., de Laat W. T., van Dijken J. P., Pronk J. T. ( 2007). Development of efficient xylose fermentation in Saccharomyces cerevisiae: xylose isomerase as a key component. Adv Biochem Eng Biotechnol 108:179–204[PubMed]
    [Google Scholar]
  62. Wegner S. V., Sun F., Hernandez N., He C. ( 2011). The tightly regulated copper window in yeast. Chem Commun (Camb) 47:2571–2573 [View Article][PubMed]
    [Google Scholar]
  63. Welch J. W., Fogel S., Cathala G., Karin M. ( 1983). Industrial yeasts display tandem gene iteration at the CUP1 region. Mol Cell Biol 3:1353–1361[PubMed]
    [Google Scholar]
  64. Wu X., Sinani D., Kim H., Lee J. ( 2009). Copper transport activity of yeast Ctr1 is down-regulated via its C terminus in response to excess copper. J Biol Chem 284:4112–4122 [View Article][PubMed]
    [Google Scholar]
  65. Wysocki R., Tamás M. J. ( 2010). How Saccharomyces cerevisiae copes with toxic metals and metalloids. FEMS Microbiol Rev 34:925–951 [View Article][PubMed]
    [Google Scholar]
  66. Yamaguchi-Iwai Y., Serpe M., Haile D., Yang W., Kosman D. J., Klausner R. D., Dancis A. ( 1997). Homeostatic regulation of copper uptake in yeast via direct binding of MAC1 protein to upstream regulatory sequences of FRE1 and CTR1. J Biol Chem 272:17711–17718 [View Article][PubMed]
    [Google Scholar]
  67. Zhang J. ( 2003). Evolution by gene duplication: an update. Trends Ecol Evol 18:292–298 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.058024-0
Loading
/content/journal/micro/10.1099/mic.0.058024-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed