1887

Abstract

is the aetiological agent of porcine pleuropneumonia and is normally transmitted by aerosols and direct contact between animals. has traditionally been considered an obligate pathogen of pigs and its presence in the environment has yet to be investigated. Here, the presence of was detected in drinking water of pig farms in Mexico using a PCR specific for the RTX toxin gene, . The presence of in farm drinking water was confirmed by indirect immunofluorescence using an -specific polyclonal antibody and by fluorescent hybridization. Viable bacteria from the farm drinking water were detected using the Live/Dead Light stain. Additionally, viable was selected and isolated using the cAMP test and the identity of the isolated bacteria were confirmed by Gram staining, a specific polyclonal antibody and an -specific PCR. Furthermore, biofilms were observed by scanning electron microscopy in -positive samples. In conclusion, our data suggest that viable is present in the drinking water of swine farms and may use biofilm as a strategy to survive in the environment.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.057992-0
2013-03-01
2020-10-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/3/536.html?itemId=/content/journal/micro/10.1099/mic.0.057992-0&mimeType=html&fmt=ahah

References

  1. Archambault M., Labrie J., Rioux C. R., Dumas F., Thibault P., Elkins C., Jacques M.. ( 2003;). Identification and preliminary characterization of a 75-kDa hemin- and hemoglobin-binding outer membrane protein of Actinobacillus pleuropneumoniae serotype 1. Can J Vet Res67:271–277[PubMed]
    [Google Scholar]
  2. Assavacheep P., Rycroft A. N.. ( 2013;). Survival of Actinobacillus pleuropneumoniae outside the pig. Res Vet Sci94:22–26 [CrossRef][PubMed]
    [Google Scholar]
  3. Baum M. M., Kainović A., O’Keeffe T., Pandita R., McDonald K., Wu S., Webster P.. ( 2009;). Characterization of structures in biofilms formed by a Pseudomonas fluorescens isolated from soil. BMC Microbiol9:103–109 [CrossRef][PubMed]
    [Google Scholar]
  4. Bossé J. T., Sinha S., Li M. S., O’Dwyer C. A., Nash J. H., Rycroft A. N., Kroll J. S., Langford P. R.. ( 2010;). Regulation of pga operon expression and biofilm formation in Actinobacillus pleuropneumoniae by σE and H-NS. J Bacteriol192:2414–2423 [CrossRef][PubMed]
    [Google Scholar]
  5. Boulos L., Prévost M., Barbeau B., Coallier J., Desjardins R.. ( 1999;). LIVE/DEAD® BacLight™: application of a new rapid staining method for direct enumeration of viable and total bacteria in drinking water. J Microbiol Methods37:77–86 [CrossRef][PubMed]
    [Google Scholar]
  6. Brockmeier S., Halbur P., Thacker E.. ( 2003;). Porcine respiratory disease complex. Polymicrobial Diseases231–258 Brogden K. A., Guthmiller J. M.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  7. Chiers K., De Waele T., Pasmans F., Ducatelle R., Haesebrouck F.. ( 2010;). Virulence factors of Actinobacillus pleuropneumoniae involved in colonization, persistence and induction of lesions in its porcine host. Vet Res41:65 [CrossRef][PubMed]
    [Google Scholar]
  8. Cochran W. G.. ( 1977;). Sampling Techniques, 3rd edn. New York: Wiley;
    [Google Scholar]
  9. Cooper I. R., Hanlon G. W.. ( 2010;). Resistance of Legionella pneumophila serotype 1 biofilms to chlorine-based disinfection. J Hosp Infect74:152–159 [CrossRef][PubMed]
    [Google Scholar]
  10. Dousse F., Thomann A., Brodard I., Korczak B. M., Schlatter Y., Kuhnert P., Miserez R., Frey J.. ( 2008;). Routine phenotypic identification of bacterial species of the family Pasteurellaceae isolated from animals. J Vet Diagn Invest20:716–724[PubMed][CrossRef]
    [Google Scholar]
  11. Frey J.. ( 2003;). Detection, identification, and subtyping of Actinobacillus pleuropneumoniae . Methods Mol Biol216:87–95[PubMed]
    [Google Scholar]
  12. Gião M. S., Azevedo N. F., Wilks S. A., Vieira M. J., Keevil C. W.. ( 2010;). Effect of chlorine on incorporation of Helicobacter pylori into drinking water biofilms. Appl Environ Microbiol76:1669–1673 [CrossRef][PubMed]
    [Google Scholar]
  13. Gioia J., Qin X., Jiang H., Clinkenbeard K., Lo R., Liu Y., Fox G. E., Yerrapragada S., McLeod M. P.. & other authors ( 2006;). The genome sequence of Mannheimia haemolytica A1: insights into virulence, natural competence, and Pasteurellaceae phylogeny. J Bacteriol188:7257–7266 [CrossRef][PubMed]
    [Google Scholar]
  14. Grasteau A., Tremblay Y. D., Labrie J., Jacques M.. ( 2011;). Novel genes associated with biofilm formation of Actinobacillus pleuropneumoniae . Vet Microbiol153:134–143 [CrossRef][PubMed]
    [Google Scholar]
  15. Guerrero-Barrera A. L., de la Garza M., Mondragón R., García-Cuéllar C., Segura-Nieto M.. ( 1999;). Actin-related proteins in Actinobacillus pleuropneumoniae and their interactions with actin-binding proteins. Microbiology145:3235–3244[PubMed]
    [Google Scholar]
  16. Gutiérrez-Cantú F. J., Feria-Velasco A., Palacios-Arenas L. N., Alvarado-Estrada K. N., Avelar-González F. J., Flores-Reyes H., Mariel-Cárdenas J., Guerrero-Barrera A. L.. ( 2011;). Amelogenin and enamelysin localization in human dental germs. In Vitro Cell Dev Biol Anim47:355–360[PubMed][CrossRef]
    [Google Scholar]
  17. Izano E. A., Sadovskaya I., Vinogradov E., Mulks M. H., Velliyagounder K., Ragunath C., Kher W. B., Ramasubbu N., Jabbouri S.. & other authors ( 2007;). Poly-N-acetylglucosamine mediates biofilm formation and antibiotic resistance in Actinobacillus pleuropneumoniae . Microb Pathog43:1–9 [CrossRef][PubMed]
    [Google Scholar]
  18. Jacobsen I., Hennig-Pauka I., Baltes N., Trost M., Gerlach G. F.. ( 2005;). Enzymes involved in anaerobic respiration appear to play a role in Actinobacillus pleuropneumoniae virulence. Infect Immun73:226–234[PubMed][CrossRef]
    [Google Scholar]
  19. Jacques M., Aragon V., Tremblay Y. D.. ( 2010;). Biofilm formation in bacterial pathogens of veterinary importance. Anim Health Res Rev11:97–121 [CrossRef][PubMed]
    [Google Scholar]
  20. Kamruzzaman M., Udden S. M. N., Cameron D. E., Calderwood S. B., Nair G. B., Mekalanos J. J., Faruque S. M.. ( 2010;). Quorum-regulated biofilms enhance the development of conditionally viable, environmental Vibrio cholerae . Proc Natl Acad Sci U S A107:1588–1593 [CrossRef][PubMed]
    [Google Scholar]
  21. Kim J. M., Jung D. I., Eom Y. J., Park S. M., Yoo H. S., Jang Y. S., Yang M. S., Kim D. H.. ( 2010;). Surface-displayed expression of a neutralizing epitope of ApxIIA exotoxin in Saccharomyces cerevisiae and oral administration of it for protective immune responses against challenge by Actinobacillus pleuropneumoniae . Biosci Biotechnol Biochem74:1362–1367[PubMed][CrossRef]
    [Google Scholar]
  22. Kiorpes A. L., MacWilliams P. S., Schenkman D. I., Bäckström L. R.. ( 1990;). Blood gas and hematological changes in experimental peracute porcine pleuropneumonia. Can J Vet Res54:164–169[PubMed]
    [Google Scholar]
  23. Labrie J., Pelletier-Jacques G., Deslandes V., Ramjeet M., Auger E., Nash J. H. E., Jacques M.. ( 2010;). Effects of growth conditions on biofilm formation by Actinobacillus pleuropneumoniae . Vet Res41:3–10 [CrossRef][PubMed]
    [Google Scholar]
  24. Lehtola M. J., Torvinen E., Miettinen I. T., Keevil C. W.. ( 2006;). Fluorescence in situ hybridization using peptide nucleic acid probes for rapid detection of Mycobacterium avium subsp. avium and Mycobacterium avium subsp. paratuberculosis in potable-water biofilms. Appl Environ Microbiol72:848–853 [CrossRef][PubMed]
    [Google Scholar]
  25. Li L., Zhou R., Li T., Kang M., Wan Y., Xu Z., Chen H.. ( 2008;). Enhanced biofilm formation and reduced virulence of Actinobacillus pleuropneumoniae luxS mutant. Microb Pathog45:192–200[PubMed][CrossRef]
    [Google Scholar]
  26. Li L., Xu Z., Zhou Y., Li T., Sun L., Chen H., Zhou R.. ( 2011;). Analysis on Actinobacillus pleuropneumoniae LuxS regulated genes reveals pleiotropic roles of LuxS/AI-2 on biofilm formation, adhesion ability and iron metabolism. Microb Pathog50:293–302 [CrossRef][PubMed]
    [Google Scholar]
  27. Lindsay D., von Holy A.. ( 2006;). Bacterial biofilms within the clinical setting: what healthcare professionals should know. J Hosp Infect64:313–325 [CrossRef][PubMed]
    [Google Scholar]
  28. MacInnes J. I., Gottschalk M., Lone A. G., Metcalf D. S., Ojha S., Rosendal T., Watson S. B., Friendship R. M.. ( 2008;). Prevalence of Actinobacillus pleuropneumoniae, Actinobacillus suis, Haemophilus parasuis, Pasteurella multocida, and Streptococcus suis in representative Ontario swine herds. Can J Vet Res72:242–248[PubMed]
    [Google Scholar]
  29. Mena K. D., Gerba C. P.. ( 2009;). Risk assessment of Pseudomonas aeruginosa in water. Rev Environ Contam Toxicol201:71–115 [CrossRef][PubMed]
    [Google Scholar]
  30. Ohba T., Shibahara T., Kobayashi H., Takashima A., Nagoshi M., Kubo M.. ( 2010;). Granulomatous lymphadenitis associated with Actinobacillus pleuropneumoniae serotype 2 in slaughter barrows. Can Vet J51:733–737[PubMed]
    [Google Scholar]
  31. Rayamajhi N., Shin S. J., Kang S. G., Lee D. Y., Ahn J. M., Yoo H. S.. ( 2005;). Development and use of a multiplex polymerase chain reaction assay based on Apx toxin genes for genotyping of Actinobacillus pleuropneumoniae isolates. J Vet Diagn Invest17:359–362 [CrossRef][PubMed]
    [Google Scholar]
  32. Reiner G., Fresen C., Bronnert S., Haack I., Willems H.. ( 2010;). Prevalence of Actinobacillus pleuropneumoniae infection in hunted wild boars (Sus scrofa) in Germany. J Wildl Dis46:551–555[PubMed][CrossRef]
    [Google Scholar]
  33. Rodriguez-Nuñez J., Avelar-Gonzalez F. J., Marquez F., Rivas-Santiago B., Quiñones C., Guerrero-Barrera A. L.. ( 2012;). Mycobacterium tuberculosis complex detected by modified fluorescent in situ hybridization in lymph nodes of clinical samples. J Infect Dev Ctries6:58–66[PubMed]
    [Google Scholar]
  34. Sambrook J., Russell D. W.. ( 2001;). Molecular Cloning, a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  35. Schuchert J. A., Inzana T. J., Angen O., Jessing S.. ( 2004;). Detection and identification of Actinobacillus pleuropneumoniae serotypes 1, 2, and 8 by multiplex PCR. J Clin Microbiol42:4344–4348[PubMed][CrossRef]
    [Google Scholar]
  36. Shikuma N. J., Hadfield M. G.. ( 2010;). Marine biofilms on submerged surfaces are a reservoir for Escherichia coli and Vibrio cholerae . Biofouling26:39–46 [CrossRef][PubMed]
    [Google Scholar]
  37. Silva-Briano M., Martínez-Hernández S. L., Adabache-Ortíz A., Ventura-Juárez J., Salinas E., Quintanar J. L.. ( 2007;). Ultrastructural analysis and identification of membrane proteins in the free-living amoeba Difflugia corona . Biocell31:225–228[PubMed]
    [Google Scholar]
  38. Vaerewijck M. J., Huys G., Palomino J. C., Swings J., Portaels F.. ( 2005;). Mycobacteria in drinking water distribution systems: ecology and significance for human health. FEMS Microbiol Rev29:911–934 [CrossRef][PubMed]
    [Google Scholar]
  39. Wagner T. K., Mulks M. H.. ( 2007;). Identification of the Actinobacillus pleuropneumoniae leucine-responsive regulatory protein and its involvement in the regulation of in vivo-induced genes. Infect Immun75:91–103 [CrossRef][PubMed]
    [Google Scholar]
  40. Xie F., Zhang M., Li S., Du C., Sun C., Han W., Zhou L., Lei L.. ( 2010;). Differential gene expression in the pathogenic strains of Actinobacillus pleuropneumoniae serotypes 1 and 3. J Microbiol Biotechnol20:789–797[PubMed]
    [Google Scholar]
  41. Xu Z., Zhou Y., Li L., Zhou R., Xiao S., Wan Y., Zhang S., Wang K., Li W.. & other authors ( 2008;). Genome biology of Actinobacillus pleuropneumoniae JL03, an isolate of serotype 3 prevalent in China. PLoS ONE3:e1450 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.057992-0
Loading
/content/journal/micro/10.1099/mic.0.057992-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error