1887

Abstract

Marine sponges have never been directly examined with respect to the presence of viruses or their potential involvement in horizontal gene transfer. Here we demonstrate for the first time, to our knowledge, the presence of viruses in the marine sponge Moreover, bacterial 16S rDNA was detected in DNA isolated from these viruses, indicating that phage-derived transduction appears to occur in . Phylogenetic analysis revealed that bacterial 16S rDNA isolated from sponge-derived viral and total DNA differed significantly, indicating that not all species are equally involved in transduction.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.057943-0
2012-11-01
2020-01-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/11/2789.html?itemId=/content/journal/micro/10.1099/mic.0.057943-0&mimeType=html&fmt=ahah

References

  1. Ackermann H. W.. ( 1996;). Frequency of morphological phage descriptions in 1995. Arch Virol141:209–218 [CrossRef][PubMed]
    [Google Scholar]
  2. Angly F. E., Felts B., Breitbart M., Salamon P., Edwards R. A., Carlson C., Chan A. M., Haynes M., Kelley S.. & other authors ( 2006;). The marine viromes of four oceanic regions. PLoS Biol4:e368 [CrossRef][PubMed]
    [Google Scholar]
  3. Brady S. F.. ( 2007;). Construction of soil environmental DNA cosmid libraries and screening for clones that produce biologically active small molecules. Nat Protoc2:1297–1305 [CrossRef][PubMed]
    [Google Scholar]
  4. Casas V., Rohwer F.. ( 2007;). Phage metagenomics. Methods Enzymol421:259–268 [CrossRef][PubMed]
    [Google Scholar]
  5. Del Casale A., Flanagan P. V., Larkin M. J., Allen C. C., Kulakov L. A.. ( 2011a;). Analysis of transduction in wastewater bacterial populations by targeting the phage-derived 16S rRNA gene sequences. FEMS Microbiol Ecol76:100–108 [CrossRef][PubMed]
    [Google Scholar]
  6. Del Casale A., Flanagan P. V., Larkin M. J., Allen C. C. R., Kulakov L. A.. ( 2011b;). Extent and variation of phage-borne bacterial 16S rRNA gene sequences in wastewater environments. Appl Environ Microbiol77:5529–5532 [CrossRef][PubMed]
    [Google Scholar]
  7. Gerçe B., Schwartz T., Syldatk C., Hausmann R.. ( 2011;). Differences between bacterial communities associated with the surface or tissue of Mediterranean sponge species. Microb Ecol61:769–782 [CrossRef][PubMed]
    [Google Scholar]
  8. Ghosh D., Roy K., Williamson K. E., White D. C., Wommack K. E., Sublette K. L., Radosevich M.. ( 2008;). Prevalence of lysogeny among soil bacteria and presence of 16S rRNA and trzN genes in viral-community DNA . Appl Environ Microbiol74:495–502 [CrossRef][PubMed]
    [Google Scholar]
  9. Grozdanov L., Hentschel U.. ( 2007;). An environmental genomics perspective on the diversity and function of marine sponge-associated microbiota. Curr Opin Microbiol10:215–220 [CrossRef][PubMed]
    [Google Scholar]
  10. Hentschel U., Usher K. M., Taylor M. W.. ( 2006;). Marine sponges as microbial fermenters. FEMS Microbiol Ecol55:167–177 [CrossRef][PubMed]
    [Google Scholar]
  11. Huang S., Wilhelm S. W., Jiao N., Chen F.. ( 2010;). Ubiquitous cyanobacterial podoviruses in the global oceans unveiled through viral DNA polymerase gene sequences. ISME J4:1243–1251 [CrossRef][PubMed]
    [Google Scholar]
  12. Huang S., Wang K., Jiao N., Chen F.. ( 2012;). Genome sequences of siphoviruses infecting marine Synechococcus unveil a diverse cyanophage group and extensive phage-host genetic exchanges. Environ Microbiol14:540–558 [CrossRef][PubMed]
    [Google Scholar]
  13. Huber T., Faulkner G., Hugenholtz P.. ( 2004;). Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics20:2317–2319 [CrossRef][PubMed]
    [Google Scholar]
  14. Jackson S. A., Kennedy J., Morrisey J. P., O'Gara F., Dobson A. D. W.. ( 2012;). Pyrosequencing reveals diverse and distinct sponge-specific microbial communities in sponges from a single geographical location in Irish waters. Microb Ecol64:105–116 [CrossRef][PubMed]
    [Google Scholar]
  15. Kennedy J., Codling C. E., Jones B. V., Dobson A. D., Marchesi J. R.. ( 2008;). Diversity of microbes associated with the marine sponge, Haliclona simulans, isolated from Irish waters and identification of polyketide synthase genes from the sponge metagenome. Environ Microbiol10:1888–1902 [CrossRef][PubMed]
    [Google Scholar]
  16. Kristensen D. M., Mushegian A. R., Dolja V. V., Koonin E. V.. ( 2010;). New dimensions of the virus world discovered through metagenomics. Trends Microbiol18:11–19 [CrossRef][PubMed]
    [Google Scholar]
  17. Lohr J. E., Chen F., Hill R. T.. ( 2005;). Genomic analysis of bacteriophage PhiJL001: insights into its interaction with a sponge-associated alpha-proteobacterium. Appl Environ Microbiol71:1598–1609 [CrossRef][PubMed]
    [Google Scholar]
  18. Lozupone C., Hamady M., Knight R.. ( 2006;). UniFrac–an online tool for comparing microbial community diversity in a phylogenetic context. BMC Bioinformatics7:371 [CrossRef][PubMed]
    [Google Scholar]
  19. Marchesi J. R., Sato T., Weightman A. J., Martin T. A., Fry J. C., Hiom S. J., Dymock D., Wade W. G.. ( 1998;). Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl Environ Microbiol64:795–799[PubMed]
    [Google Scholar]
  20. Meyer B., Kuever J.. ( 2008;). Phylogenetic diversity and spatial distribution of the microbial community associated with the Caribbean deep-water sponge Polymastia cf. corticata by 16S rRNA, aprA, and amoA gene analysis. Microb Ecol56:306–321 [CrossRef][PubMed]
    [Google Scholar]
  21. Parsley L. C., Consuegra E. J., Thomas S. J., Bhavsar J., Land A. M., Bhuiyan N. N., Mazher M. A., Waters R. J., Wommack K. E.. & other authors ( 2010;). Census of the viral metagenome within an activated sludge microbial assemblage. Appl Environ Microbiol76:2673–2677 [CrossRef][PubMed]
    [Google Scholar]
  22. Rohwer F., Prangishvili D., Lindell D.. ( 2009;). Roles of viruses in the environment. Environ Microbiol11:2771–2774 [CrossRef][PubMed]
    [Google Scholar]
  23. Sambrook J., Russell D. W.. ( 2001;). Molecular Cloning: a Laboratory Manual, 3rd edn.vol. 1 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  24. Sander M., Schmieger H.. ( 2001;). Method for host-independent detection of generalized transducing bacteriophages in natural habitats. Appl Environ Microbiol671490–1493[CrossRef]
    [Google Scholar]
  25. Suttle C. A.. ( 2005;). Viruses in the sea. Nature437:356–361 [CrossRef][PubMed]
    [Google Scholar]
  26. Suttle C. A.. ( 2007;). Marine viruses–major players in the global ecosystem. Nat Rev Microbiol5:801–812 [CrossRef][PubMed]
    [Google Scholar]
  27. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  28. Taylor M. W., Radax R., Steger D., Wagner M.. ( 2007;). Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev71:295–347 [CrossRef][PubMed]
    [Google Scholar]
  29. Thurber R. V., Haynes M., Breitbart M., Wegley L., Rohwer F.. ( 2009;). Laboratory procedures to generate viral metagenomes. Nat Protoc4:470–483 [CrossRef][PubMed]
    [Google Scholar]
  30. Veesler D., Cambillau C.. ( 2011;). A common evolutionary origin for tailed-bacteriophage functional modules and bacterial machineries. Microbiol Mol Biol Rev75:423–433 [CrossRef][PubMed]
    [Google Scholar]
  31. Webster N. S., Taylor M. W.. ( 2012;). Marine sponges and their microbial symbionts: love and other relationships. Environ Microbiol14:335–346 [CrossRef][PubMed]
    [Google Scholar]
  32. Yu Y., Breitbart M., McNairnie P., Rohwer F.. ( 2006;). FastGroupII: a web-based bioinformatics platform for analyses of large 16S rDNA libraries. BMC Bioinformatics7:57 [CrossRef][PubMed]
    [Google Scholar]
  33. Zinger L., Amaral-Zettler L. A., Fuhrman J. A., Horner-Devine M. C., Huse S. M., Welch D. B., Martiny J. B., Sogin M., Boetius A., Ramette A.. ( 2011;). Global patterns of bacterial beta-diversity in seafloor and seawater ecosystems. PLoS ONE6:e24570 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.057943-0
Loading
/content/journal/micro/10.1099/mic.0.057943-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error