1887

Abstract

The capacity to form microscopic cords (cording) of species has been related to their virulence. The compounds responsible for cording are unknown, but a recent study has shown that cording could be related to the fine structure of α-mycolic acids. This investigation attributes the need for a proximal cyclopropane in α-mycolic acids for cording in and BCG and proposes cyclopropanases as good targets for new chemotherapeutic agents. As other species in addition to and form microscopic cords, it would be of major interest to know whether the relationship between proximal cyclopropanation of α-mycolic acids and cording could be extended to non-tuberculous mycobacteria. In this study, we have examined the correlation between the cording and cyclopropanation of α-mycolic acids in two species, and . Scanning electron microscopy images showed, for the first time to our knowledge, the fine structure of microscopic cords of and , confirming that these two species form true cords. Furthermore, NMR analysis performed on the same cording cultures corroborates the absence of cyclopropane rings in their α-mycolic acids. Therefore, we can conclude that the correlation between cording and cyclopropanation of α-mycolic acids cannot be extended to all mycobacteria. As and grow rapidly and have a simple pattern of mycolic acids (only α-unsaturated mycolic acids), we propose these two species as suitable models for the study of the role of mycolic acids in cording.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.057919-0
2012-06-01
2020-07-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/6/1615.html?itemId=/content/journal/micro/10.1099/mic.0.057919-0&mimeType=html&fmt=ahah

References

  1. Behr M. A., Wilson M. A., Gill W. P., Salamon H., Schoolnik G. K., Rane S., Small P. M.. ( 1999;). Comparative genomics of BCG vaccines by whole-genome DNA microarray. Science284:1520–1523 [CrossRef][PubMed]
    [Google Scholar]
  2. Bhatt A., Fujiwara N., Bhatt K., Gurcha S. S., Kremer L., Chen B., Chan J., Porcelli S. A., Kobayashi K. et al. ( 2007;). Deletion of kasB in Mycobacterium tuberculosis causes loss of acid-fastness and subclinical latent tuberculosis in immunocompetent mice. Proc Natl Acad Sci U S A104:5157–5162 [CrossRef][PubMed]
    [Google Scholar]
  3. Bloch H., Sorkin E., Erlenmeyer H.. ( 1953;). A toxic lipid component of the tubercle bacillus (cord factor). I. Isolation from petroleum ether extracts of young bacterial cultures. Am Rev Tuberc67:629–643[PubMed]
    [Google Scholar]
  4. Chen J. M., German G. J., Alexander D. C., Ren H., Tan T., Liu J.. ( 2006;). Roles of Lsr2 in colony morphology and biofilm formation of Mycobacterium smegmatis. J Bacteriol188:633–641 [CrossRef][PubMed]
    [Google Scholar]
  5. Clement C. G., Loeffelholz M. J., Eltorky M. A., Tang Y. W., Williams-Bouyer N.. ( 2011;). Mycobacterium haemophilum and Histoplasma capsulatum coinfection in a renal transplant patient. J Clin Microbiol49:3425–3428 [CrossRef][PubMed]
    [Google Scholar]
  6. Daffé M., Lanéelle M. A., Lacave C.. ( 1991;). Structure and stereochemistry of mycolic acids of Mycobacterium marinum and Mycobacterium ulcerans. Res Microbiol142:397–403 [CrossRef][PubMed]
    [Google Scholar]
  7. Dong D., Wang D., Li M., Wang H., Yu J., Wang C., Liu J., Gao Q.. ( 2012;). PPE38 modulates the innate immune response and is required for Mycobacterium marinum virulence. Infect Immun80:43–54 [CrossRef][PubMed]
    [Google Scholar]
  8. Gao L. Y., Laval F., Lawson E. H., Groger R. K., Woodruff A., Morisaki J. H., Cox J. S., Daffe M., Brown E. J.. ( 2003;). Requirement for kasB in Mycobacterium mycolic acid biosynthesis, cell wall impermeability and intracellular survival: implications for therapy. Mol Microbiol49:1547–1563 [CrossRef][PubMed]
    [Google Scholar]
  9. Gao Q., Kripke K., Arinc Z., Voskuil M., Small P.. ( 2004;). Comparative expression studies of a complex phenotype: cord formation in Mycobacterium tuberculosis. Tuberculosis (Edinb)84:188–196 [CrossRef][PubMed]
    [Google Scholar]
  10. Glickman M. S.. ( 2008;). Cording, cord factors, and trehalose dimycolate. The Mycobacterial Cell Envelope63–73 Daffé M., Reyrat J. M.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  11. Glickman M. S., Cox J. S., Jacobs W. R. Jr. ( 2000;). A novel mycolic acid cyclopropane synthetase is required for cording, persistence, and virulence of Mycobacterium tuberculosis. Mol Cell5:717–727 [CrossRef][PubMed]
    [Google Scholar]
  12. Howard S. T., Rhoades E., Recht J., Pang X., Alsup A., Kolter R., Lyons C. R., Byrd T. F.. ( 2006;). Spontaneous reversion of Mycobacterium abscessus from a smooth to a rough morphotype is associated with reduced expression of glycopeptidolipid and reacquisition of an invasive phenotype. Microbiology152:1581–1590 [CrossRef][PubMed]
    [Google Scholar]
  13. Hsu T., Hingley-Wilson S. M., Chen B., Chen M., Dai A. Z., Morin P. M., Marks C. B., Padiyar J., Goulding C. et al. ( 2003;). The primary mechanism of attenuation of bacillus Calmette-Guerin is a loss of secreted lytic function required for invasion of lung interstitial tissue. Proc Natl Acad Sci U S A100:12420–12425 [CrossRef][PubMed]
    [Google Scholar]
  14. Julián E., Roldán M., Sánchez-Chardi A., Astola O., Agustí G., Luquin M.. ( 2010;). Microscopic cords, a virulence-related characteristic of Mycobacterium tuberculosis, are also present in nonpathogenic mycobacteria. J Bacteriol192:1751–1760 [CrossRef][PubMed]
    [Google Scholar]
  15. Koch R.. ( 1982;). The etiology of tuberculosis. Rev Infect Dis4:1270–1274 [CrossRef][PubMed]
    [Google Scholar]
  16. Lévy-Frébault V., Rafidinarivo E., Promé J.-C., Grandry J., Boisvert H., David H. L.. ( 1983;). Mycobacterium fallax sp. nov.. Int J Syst Bacteriol33:336–343 [CrossRef]
    [Google Scholar]
  17. Luquin M., Ausina V., Vincent-Lévy-Frébault V., Lanéelle M. A., Belda F., García-Barceló M., Prats G., Daffé M.. ( 1993;). Mycobacterium brumae sp. nov., a rapidly growing, nonphotochromogenic mycobacterium. Int J Syst Bacteriol43:405–413 [CrossRef]
    [Google Scholar]
  18. Makinoshima H., Glickman M. S.. ( 2005;). Regulation of Mycobacterium tuberculosis cell envelope composition and virulence by intramembrane proteolysis. Nature436:406–409 [CrossRef][PubMed]
    [Google Scholar]
  19. Marrakchi H., Bardou F., Lanéelle M. A., Daffé M.. ( 2008;). A comprehensive overview of mycolic acids structure and biosynthesis. The Mycobacterial Cell Envelope41–62 Daffé M., Reyrat J. M.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  20. Middlebrook G., Dubos R. J., Pierce C.. ( 1947;). Virulence and morphological characteristics of mammalian tubercle bacilli. J Exp Med86:175–184 [CrossRef][PubMed]
    [Google Scholar]
  21. Minnikin D. E., Hutchinson I. G., Caldicott A. B., Goodfellow M.. ( 1980;). Thin-layer chromatography of methanolysates of mycolic acid-containing bacteria. J Chromatogr A188:221–233 [CrossRef]
    [Google Scholar]
  22. Noll H., Bloch H., Asselineau J., Lederer E.. ( 1956;). The chemical structure of the cord factor of Mycobacterium tuberculosis. Biochim Biophys Acta20:299–309 [CrossRef][PubMed]
    [Google Scholar]
  23. O’Reilly L. M., Daborn C. J.. ( 1995;). The epidemiology of Mycobacterium bovis infections in animals and man: a review. Tuber Lung Dis76:Suppl. 11–46 [CrossRef][PubMed]
    [Google Scholar]
  24. Ojha A. K., Baughn A. D., Sambandan D., Hsu T., Trivelli X., Guerardel Y., Alahari A., Kremer L., Jacobs W. R. Jr, Hatfull G. F.. ( 2008;). Growth of Mycobacterium tuberculosis biofilms containing free mycolic acids and harbouring drug-tolerant bacteria. Mol Microbiol69:164–174 [CrossRef][PubMed]
    [Google Scholar]
  25. Ojha A. K., Trivelli X., Guerardel Y., Kremer L., Hatfull G. F.. ( 2010;). Enzymatic hydrolysis of trehalose dimycolate releases free mycolic acids during mycobacterial growth in biofilms. J Biol Chem285:17380–17389 [CrossRef][PubMed]
    [Google Scholar]
  26. Pym A. S., Brodin P., Brosch R., Huerre M., Cole S. T.. ( 2002;). Loss of RD1 contributed to the attenuation of the live tuberculosis vaccines Mycobacterium bovis BCG and Mycobacterium microti. Mol Microbiol46:709–717 [CrossRef][PubMed]
    [Google Scholar]
  27. Rafidinarivo E., Promé J.-C., Lévy-Frébault V.. ( 1985;). New kinds of unsaturated mycolic acids from Mycobacterium fallax sp. nov.. Chem Phys Lipids36:215–228 [CrossRef]
    [Google Scholar]
  28. Sánchez-Chardi A., Olivares F., Byrd T. F., Julián E., Brambilla C., Luquin M.. ( 2011;). Demonstration of cord formation by rough Mycobacterium abscessus variants: implications for the clinical microbiology laboratory. J Clin Microbiol49:2293–2295 [CrossRef][PubMed]
    [Google Scholar]
  29. Staropoli J. F., Branda J. A.. ( 2008;). Cord formation in a clinical isolate of Mycobacterium marinum. J Clin Microbiol46:2814–2816 [CrossRef][PubMed]
    [Google Scholar]
  30. Uenishi Y., Fujita Y., Kusunose N., Yano I., Sunagawa M.. ( 2008;). Comprehensive analysis of mycolic acid subclass and molecular species composition of Mycobacterium bovis BCG Tokyo 172 cell wall skeleton (SMP-105). J Microbiol Methods72:149–156 [CrossRef][PubMed]
    [Google Scholar]
  31. Watanabe M., Ohta A., Sasaki S., Minnikin D. E.. ( 1999;). Structure of a new glycolipid from the Mycobacterium avium-Mycobacterium intracellulare complex. J Bacteriol181:2293–2297[PubMed]
    [Google Scholar]
  32. Yuan Y., Barry C. E. III. ( 1996;). A common mechanism for the biosynthesis of methoxy and cyclopropyl mycolic acids in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A93:12828–12833 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.057919-0
Loading
/content/journal/micro/10.1099/mic.0.057919-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error