1887

Abstract

Phenolic glycolipids (PGLs) are non-covalently bound components of the outer membrane of many clinically relevant mycobacterial pathogens, and play important roles in pathogen biology. We report a mutational analysis that conclusively demonstrates that the conserved acyltransferase-encoding gene is essential for PGL production. In addition, we provide an acyltransferase activity analysis that establishes proof of principle for the competency of PapA5 to utilize diol-containing polyketide compounds of mycobacterial origin as acyl-acceptor substrates. Overall, the results reported herein are in line with a model in which PapA5 catalyses the acylation of diol-containing polyketides to form PGLs. These studies advance our understanding of the biosynthesis of an important group of mycobacterial glycolipids and suggest that PapA5 might be an attractive target for exploring the development of antivirulence drugs.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.057869-0
2012-05-01
2020-10-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/5/1379.html?itemId=/content/journal/micro/10.1099/mic.0.057869-0&mimeType=html&fmt=ahah

References

  1. Alibaud L., Rombouts Y., Trivelli X., Burguière A., Cirillo S. L., Cirillo J. D., Dubremetz J. F., Guérardel Y., Lutfalla G., Kremer L.. ( 2011;). A Mycobacterium marinum TesA mutant defective for major cell wall-associated lipids is highly attenuated in Dictyostelium discoideum and zebrafish embryos. Mol Microbiol80:919–934 [CrossRef][PubMed]
    [Google Scholar]
  2. Astarie-Dequeker C., Le Guyader L., Malaga W., Seaphanh F. K., Chalut C., Lopez A., Guilhot C.. ( 2009;). Phthiocerol dimycocerosates of M. tuberculosis participate in macrophage invasion by inducing changes in the organization of plasma membrane lipids. PLoS Pathog5:e1000289 [CrossRef][PubMed]
    [Google Scholar]
  3. Brennan P. J., Nikaido H.. ( 1995;). The envelope of mycobacteria. Annu Rev Biochem64:29–63 [CrossRef][PubMed]
    [Google Scholar]
  4. Brennan P. J., Chatterjee D., Fujiwara T., Cho S. N.. ( 1994;). Leprosy-specific neoglycoconjugates: synthesis and application to serodiagnosis of leprosy. Methods Enzymol242:27–37 [CrossRef][PubMed]
    [Google Scholar]
  5. Brodin P., Poquet Y., Levillain F., Peguillet I., Larrouy-Maumus G., Gilleron M., Ewann F., Christophe T., Fenistein D.. & other authors ( 2010;). High content phenotypic cell-based visual screen identifies Mycobacterium tuberculosis acyltrehalose-containing glycolipids involved in phagosome remodeling. PLoS Pathog6:e1001100 [CrossRef][PubMed]
    [Google Scholar]
  6. Buglino J., Onwueme K. C., Ferreras J. A., Quadri L. E., Lima C. D.. ( 2004;). Crystal structure of PapA5, a phthiocerol dimycocerosyl transferase from Mycobacterium tuberculosis . J Biol Chem279:30634–30642 [CrossRef][PubMed]
    [Google Scholar]
  7. Camacho L. R., Ensergueix D., Perez E., Gicquel B., Guilhot C.. ( 1999;). Identification of a virulence gene cluster of Mycobacterium tuberculosis by signature-tagged transposon mutagenesis. Mol Microbiol34:257–267 [CrossRef][PubMed]
    [Google Scholar]
  8. Chavadi S. S., Stirrett K. L., Edupuganti U. R., Vergnolle O., Sadhanandan G., Marchiano E., Martin C., Qiu W. G., Soll C. E., Quadri L. E.. ( 2011a;). Mutational and phylogenetic analyses of the mycobacterial mbt gene cluster. J Bacteriol193:5905–5913 [CrossRef][PubMed]
    [Google Scholar]
  9. Chavadi S. S., Edupuganti U. R., Vergnolle O., Fatima I., Singh S. M., Soll C. E., Quadri L. E.. ( 2011b;). Inactivation of tesA reduces cell wall lipid production and increases drug susceptibility in mycobacteria. J Biol Chem286:24616–24625 [CrossRef][PubMed]
    [Google Scholar]
  10. Collins D. M., Skou B., White S., Bassett S., Collins L., For R., Hurr K., Hotter G., de Lisle G. W.. ( 2005;). Generation of attenuated Mycobacterium bovis strains by signature-tagged mutagenesis for discovery of novel vaccine candidates. Infect Immun73:2379–2386 [CrossRef][PubMed]
    [Google Scholar]
  11. Constant P., Perez E., Malaga W., Lanéelle M. A., Saurel O., Daffé M., Guilhot C.. ( 2002;). Role of the pks15/1 gene in the biosynthesis of phenolglycolipids in the Mycobacterium tuberculosis complex. Evidence that all strains synthesize glycosylated p-hydroxybenzoic methyl esters and that strains devoid of phenolglycolipids harbor a frameshift mutation in the pks15/1 gene. J Biol Chem277:38148–38158 [CrossRef][PubMed]
    [Google Scholar]
  12. Cox J. S., Chen B., McNeil M., Jacobs W. R. Jr. ( 1999;). Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature402:79–83[PubMed][CrossRef]
    [Google Scholar]
  13. Crick D. C., Quadri L. E., Brennan P. J.. ( 2008;). Biochemistry of the cell envelope of Mycobacterium tuberculosis . Handbook of Tuberculosis: Molecular Biology and Biochemistry1–19 Kaufmann S. H. E., Rubin R.. Weinheim: Wiley-VCH;
    [Google Scholar]
  14. Dhungel S., Ranjit C., Sapkota B. R., Macdonald M.. ( 2008;). Role of PGL-I of M. leprae in TNF-alpha production by in vitro whole blood assay. Nepal Med Coll J10:1–3[PubMed]
    [Google Scholar]
  15. Ferreras J. A., Ryu J. S., Di Lello F., Tan D. S., Quadri L. E.. ( 2005;). Small-molecule inhibition of siderophore biosynthesis in Mycobacterium tuberculosis and Yersinia pestis . Nat Chem Biol1:29–32 [CrossRef][PubMed]
    [Google Scholar]
  16. Ferreras J. A., Stirrett K. L., Lu X., Ryu J. S., Soll C. E., Tan D. S., Quadri L. E.. ( 2008;). Mycobacterial phenolic glycolipid virulence factor biosynthesis: mechanism and small-molecule inhibition of polyketide chain initiation. Chem Biol15:51–61 [CrossRef][PubMed]
    [Google Scholar]
  17. He W., Soll C. E., Chavadi S. S., Zhang G., Warren J. D., Quadri L. E.. ( 2009;). Cooperation between a coenzyme A-independent stand-alone initiation module and an iterative type I polyketide synthase during synthesis of mycobacterial phenolic glycolipids. J Am Chem Soc131:16744–16750 [CrossRef][PubMed]
    [Google Scholar]
  18. Horton R. M., Hunt H. D., Ho S. N., Pullen J. K., Pease L. R.. ( 1989;). Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene77:61–68 [CrossRef][PubMed]
    [Google Scholar]
  19. Hunter S. W., Brennan P. J.. ( 1981;). A novel phenolic glycolipid from Mycobacterium leprae possibly involved in immunogenicity and pathogenicity. J Bacteriol147:728–735[PubMed]
    [Google Scholar]
  20. Murry J. P., Pandey A. K., Sassetti C. M., Rubin E. J.. ( 2009;). Phthiocerol dimycocerosate transport is required for resisting interferon-γ-independent immunity. J Infect Dis200:774–782 [CrossRef][PubMed]
    [Google Scholar]
  21. Ng V., Zanazzi G., Timpl R., Talts J. F., Salzer J. L., Brennan P. J., Rambukkana A.. ( 2000;). Role of the cell wall phenolic glycolipid-1 in the peripheral nerve predilection of Mycobacterium leprae . Cell103:511–524 [CrossRef][PubMed]
    [Google Scholar]
  22. Onwueme K. C., Ferreras J. A., Buglino J., Lima C. D., Quadri L. E.. ( 2004;). Mycobacterial polyketide-associated proteins are acyltransferases: proof of principle with Mycobacterium tuberculosis PapA5. Proc Natl Acad Sci U S A101:4608–4613 [CrossRef][PubMed]
    [Google Scholar]
  23. Onwueme K. C., Vos C. J., Zurita J., Ferreras J. A., Quadri L. E.. ( 2005a;). The dimycocerosate ester polyketide virulence factors of mycobacteria. Prog Lipid Res44:259–302 [CrossRef][PubMed]
    [Google Scholar]
  24. Onwueme K. C., Vos C. J., Zurita J., Soll C. E., Quadri L. E.. ( 2005b;). Identification of phthiodiolone ketoreductase, an enzyme required for production of mycobacterial diacyl phthiocerol virulence factors. J Bacteriol187:4760–4766 [CrossRef][PubMed]
    [Google Scholar]
  25. Parish T., Stoker N. G.. ( 1998;). Mycobacteria Protocols Totowa, NJ: Humana Press; [CrossRef]
    [Google Scholar]
  26. Parish T., Stoker N. G.. ( 2000;). Use of a flexible cassette method to generate a double unmarked Mycobacterium tuberculosis tlyA plcABC mutant by gene replacement. Microbiology146:1969–1975[PubMed]
    [Google Scholar]
  27. Quadri L. E. N.. ( 2007;). Strategic paradigm shifts in the antimicrobial drug discovery process of the 21st century. Infect Disord Drug Targets7:230–237 [CrossRef][PubMed]
    [Google Scholar]
  28. Rambukkana A., Zanazzi G., Tapinos N., Salzer J. L.. ( 2002;). Contact-dependent demyelination by Mycobacterium leprae in the absence of immune cells. Science296:927–931 [CrossRef][PubMed]
    [Google Scholar]
  29. Reed M. B., Domenech P., Manca C., Su H., Barczak A. K., Kreiswirth B. N., Kaplan G., Barry C. E. III. ( 2004;). A glycolipid of hypervirulent tuberculosis strains that inhibits the innate immune response. Nature431:84–87 [CrossRef][PubMed]
    [Google Scholar]
  30. Reed M. B., Gagneux S., Deriemer K., Small P. M., Barry C. E. III. ( 2007;). The W-Beijing lineage of Mycobacterium tuberculosis overproduces triglycerides and has the DosR dormancy regulon constitutively upregulated. J Bacteriol189:2583–2589 [CrossRef][PubMed]
    [Google Scholar]
  31. Robinson N., Kolter T., Wolke M., Rybniker J., Hartmann P., Plum G.. ( 2008;). Mycobacterial phenolic glycolipid inhibits phagosome maturation and subverts the pro-inflammatory cytokine response. Traffic9:1936–1947 [CrossRef][PubMed]
    [Google Scholar]
  32. Ruley K. M., Ansede J. H., Pritchett C. L., Talaat A. M., Reimschuessel R., Trucksis M.. ( 2004;). Identification of Mycobacterium marinum virulence genes using signature-tagged mutagenesis and the goldfish model of mycobacterial pathogenesis. FEMS Microbiol Lett232:75–81 [CrossRef][PubMed]
    [Google Scholar]
  33. Sambrook J., Fritsch E. F., Maniatis T.. ( 1989;). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  34. Sinsimer D., Huet G., Manca C., Tsenova L., Koo M. S., Kurepina N., Kana B., Mathema B., Marras S. A.. & other authors ( 2008;). The phenolic glycolipid of Mycobacterium tuberculosis differentially modulates the early host cytokine response but does not in itself confer hypervirulence. Infect Immun76:3027–3036 [CrossRef][PubMed]
    [Google Scholar]
  35. Stinear T. P., Seemann T., Harrison P. F., Jenkin G. A., Davies J. K., Johnson P. D., Abdellah Z., Arrowsmith C., Chillingworth T.. & other authors ( 2008;). Insights from the complete genome sequence of Mycobacterium marinum on the evolution of Mycobacterium tuberculosis . Genome Res18:729–741 [CrossRef][PubMed]
    [Google Scholar]
  36. Tsenova L., Ellison E., Harbacheuski R., Moreira A. L., Kurepina N., Reed M. B., Mathema B., Barry C. E. III, Kaplan G.. ( 2005;). Virulence of selected Mycobacterium tuberculosis clinical isolates in the rabbit model of meningitis is dependent on phenolic glycolipid produced by the bacilli. J Infect Dis192:98–106 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.057869-0
Loading
/content/journal/micro/10.1099/mic.0.057869-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error