1887

Abstract

The bacterial alarmone ppGpp is present only in bacteria and the chloroplasts of plants, but not in mammalian cells or eukaryotic micro-organisms such as yeasts and fungi. The importance of the ppGpp signalling system in eukaryotes has therefore been largely overlooked. Here, we demonstrated that heterologous expression of a homologue () isolated from the halophilic plant in the yeast results in accumulation of ppGpp, accompanied by enhancement of tolerance against various stress stimuli, such as osmotic stress, ethanol, hydrogen peroxide, high temperature and freezing. Unlike bacterial ppGpp accumulation, ppGpp was accumulated in the early growth phase but not in the late growth phase. Moreover, nutritional downshift resulted in a decrease in ppGpp level, suggesting that the observed Sj-RSH activity to synthesize ppGpp is not starvation-dependent, contrary to our expectations based on bacteria. Accumulated ppGpp was found to be present solely in the cytosolic fraction and not in the mitochondrial fraction, perhaps reflecting the ribosome-independent ppGpp synthesis in cells. Unlike bacterial inosine monophosphate (IMP) dehydrogenases, the IMP dehydrogenase of was insensitive to ppGpp. Microarray analysis showed that ppGpp accumulation gave rise to marked changes in gene expression, with both upregulation and downregulation, including changes in mitochondrial gene expression. The most prominent upregulation (38-fold) was detected in the hypothetical gene YBR072C–A of unknown function, followed by many other known stress-responsive genes. may provide new opportunities to uncover and analyse the ppGpp signalling system in eukaryotic cells.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.057638-0
2012-08-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/8/2213.html?itemId=/content/journal/micro/10.1099/mic.0.057638-0&mimeType=html&fmt=ahah

References

  1. Artsimovitch I., Patlan V., Sekine S., Vassylyeva M. N., Hosaka T., Ochi K., Yokoyama S., Vassylyev D. G.. ( 2004;). Structural basis for transcription regulation by alarmone ppGpp. . Cell 117:, 299–310. [CrossRef][PubMed]
    [Google Scholar]
  2. Balzer G. J., McLean R. J.. ( 2002;). The stringent response genes relA and spoT are important for Escherichia coli biofilms under slow-growth conditions. . Can J Microbiol 48:, 675–680. [CrossRef][PubMed]
    [Google Scholar]
  3. Baysse C., Cullinane M., Dénervaud V., Burrowes E., Dow J. M., Morrissey J. P., Tam L., Trevors J. T., O’Gara F.. ( 2005;). Modulation of quorum sensing in Pseudomonas aeruginosa through alteration of membrane properties. . Microbiology 151:, 2529–2542. [CrossRef][PubMed]
    [Google Scholar]
  4. Bibb M. J.. ( 2005;). Regulation of secondary metabolism in streptomycetes. . Curr Opin Microbiol 8:, 208–215. [CrossRef][PubMed]
    [Google Scholar]
  5. Braeken K., Moris M., Daniels R., Vanderleyden J., Michiels J.. ( 2006;). New horizons for (p)ppGpp in bacterial and plant physiology. . Trends Microbiol 14:, 45–54. [CrossRef][PubMed]
    [Google Scholar]
  6. Cashel M., Rudd E.. ( 1987;). The stringent response. . In Escherichia coli and Salmonella: Cellular and Molecular Biology, pp. 1410–1438. Edited by Neidhardt F. C. et al.. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  7. Cashel M., Gentry D. R., Hernandez V. J., Vinella D.. ( 1996;). The stringent response. . In Escherichia coli and Salmonella: Cellular and Molecular Biology, , 2nd edn., pp. 1458–1496. Edited by Neidhardt F. C. et al.. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  8. Chatterji D., Ojha A. K.. ( 2001;). Revisiting the stringent response, ppGpp and starvation signaling. . Curr Opin Microbiol 4:, 160–165. [CrossRef][PubMed]
    [Google Scholar]
  9. Chatterji D., Fujita N., Ishihama A.. ( 1998;). The mediator for stringent control, ppGpp, binds to the β-subunit of Escherichia coli RNA polymerase. . Genes Cells 3:, 279–287. [CrossRef][PubMed]
    [Google Scholar]
  10. Dahl J. L., Kraus C. N., Boshoff H. I., Doan B., Foley K., Avarbock D., Kaplan G., Mizrahi V., Rubin H., Barry C. E. III. ( 2003;). The role of RelMtb-mediated adaptation to stationary phase in long-term persistence of Mycobacterium tuberculosis in mice. . Proc Natl Acad Sci U S A 100:, 10026–10031. [CrossRef][PubMed]
    [Google Scholar]
  11. Erickson D. L., Lines J. L., Pesci E. C., Venturi V., Storey D. G.. ( 2004;). Pseudomonas aeruginosa relA contributes to virulence in Drosophila melanogaster. . Infect Immun 72:, 5638–5645. [CrossRef][PubMed]
    [Google Scholar]
  12. Gaynor E. C., Wells D. H., MacKichan J. K., Falkow S.. ( 2005;). The Campylobacter jejuni stringent response controls specific stress survival and virulence-associated phenotypes. . Mol Microbiol 56:, 8–27. [CrossRef][PubMed]
    [Google Scholar]
  13. Givens R. M., Lin M. H., Taylor D. J., Mechold U., Berry J. O., Hernandez V. J.. ( 2004;). Inducible expression, enzymatic activity, and origin of higher plant homologues of bacterial RelA/SpoT stress proteins in Nicotiana tabacum. . J Biol Chem 279:, 7495–7504. [CrossRef][PubMed]
    [Google Scholar]
  14. Godfrey H. P., Bugrysheva J. V., Cabello F. C.. ( 2002;). The role of the stringent response in the pathogenesis of bacterial infections. . Trends Microbiol 10:, 349–351. [CrossRef][PubMed]
    [Google Scholar]
  15. Haralalka S., Nandi S., Bhadra R. K.. ( 2003;). Mutation in the relA gene of Vibrio cholerae affects in vitro and in vivo expression of virulence factors. . J Bacteriol 185:, 4672–4682. [CrossRef][PubMed]
    [Google Scholar]
  16. Harris B. Z., Kaiser D., Singer M.. ( 1998;). The guanosine nucleotide (p)ppGpp initiates development and A-factor production in Myxococcus xanthus. . Genes Dev 12:, 1022–1035. [CrossRef][PubMed]
    [Google Scholar]
  17. Hesketh A., Sun J., Bibb M.. ( 2001;). Induction of ppGpp synthesis in Streptomyces coelicolor A3(2) grown under conditions of nutritional sufficiency elicits actII-ORF4 transcription and actinorhodin biosynthesis. . Mol Microbiol 39:, 136–144. [CrossRef][PubMed]
    [Google Scholar]
  18. Hogg T., Mechold U., Malke H., Cashel M., Hilgenfeld R.. ( 2004;). Conformational antagonism between opposing active sites in a bifunctional RelA/SpoT homolog modulates (p)ppGpp metabolism during the stringent response [corrected]. . Cell 117:, 57–68. [CrossRef][PubMed]
    [Google Scholar]
  19. Hoyt S., Jones G. H.. ( 1999;). relA is required for actinomycin production in Streptomyces antibioticus. . J Bacteriol 181:, 3824–3829.[PubMed]
    [Google Scholar]
  20. Inaoka T., Ochi K.. ( 2002;). RelA protein is involved in induction of genetic competence in certain Bacillus subtilis strains by moderating the level of intracellular GTP. . J Bacteriol 184:, 3923–3930. [CrossRef][PubMed]
    [Google Scholar]
  21. Inaoka T., Takahashi K., Ohnishi-Kameyama M., Yoshida M., Ochi K.. ( 2003;). Guanine nucleotides guanosine 5′-diphosphate 3′-diphosphate and GTP co-operatively regulate the production of an antibiotic bacilysin in Bacillus subtilis. . J Biol Chem 278:, 2169–2176. [CrossRef][PubMed]
    [Google Scholar]
  22. Jenks M. H., Reines D.. ( 2005;). Dissection of the molecular basis of mycophenolate resistance in Saccharomyces cerevisiae. . Yeast 22:, 1181–1190. [CrossRef][PubMed]
    [Google Scholar]
  23. Jishage M., Kvint K., Shingler V., Nyström T.. ( 2002;). Regulation of sigma factor competition by the alarmone ppGpp. . Genes Dev 16:, 1260–1270. [CrossRef][PubMed]
    [Google Scholar]
  24. Kasai K., Usami S., Yamada T., Endo Y., Ochi K., Tozawa Y.. ( 2002;). A RelA-SpoT homolog (Cr-RSH) identified in Chlamydomonas reinhardtii generates stringent factor in vivo and localizes to chloroplasts in vitro. . Nucleic Acids Res 30:, 4985–4992. [CrossRef][PubMed]
    [Google Scholar]
  25. Kasai K., Kanno T., Endo Y., Wakasa K., Tozawa Y.. ( 2004;). Guanosine tetra- and pentaphosphate synthase activity in chloroplasts of a higher plant: association with 70S ribosomes and inhibition by tetracycline. . Nucleic Acids Res 32:, 5732–5741. [CrossRef][PubMed]
    [Google Scholar]
  26. Kasai K., Nishizawa T., Takahashi K., Hosaka T., Aoki H., Ochi K.. ( 2006;). Physiological analysis of the stringent response elicited in an extreme thermophilic bacterium, Thermus thermophilus. . J Bacteriol 188:, 7111–7122. [CrossRef][PubMed]
    [Google Scholar]
  27. Köhler G. A., Gong X., Bentink S., Theiss S., Pagani G. M., Agabian N., Hedstrom L.. ( 2005;). The functional basis of mycophenolic acid resistance in Candida albicans IMP dehydrogenase. . J Biol Chem 280:, 11295–11302. [CrossRef][PubMed]
    [Google Scholar]
  28. Korch S. B., Henderson T. A., Hill T. M.. ( 2003;). Characterization of the hipA7 allele of Escherichia coli and evidence that high persistence is governed by (p)ppGpp synthesis. . Mol Microbiol 50:, 1199–1213. [CrossRef][PubMed]
    [Google Scholar]
  29. Krásný L., Gourse R. L.. ( 2004;). An alternative strategy for bacterial ribosome synthesis: Bacillus subtilis rRNA transcription regulation. . EMBO J 23:, 4473–4483. [CrossRef][PubMed]
    [Google Scholar]
  30. Lemos J. A., Brown T. A. Jr, Burne R. A.. ( 2004;). Effects of RelA on key virulence properties of planktonic and biofilm populations of Streptococcus mutans. . Infect Immun 72:, 1431–1440. [CrossRef][PubMed]
    [Google Scholar]
  31. Magnusson L. U., Farewell A., Nyström T.. ( 2005;). ppGpp: a global regulator in Escherichia coli. . Trends Microbiol 13:, 236–242. [CrossRef][PubMed]
    [Google Scholar]
  32. Masuda S., Mizusawa K., Narisawa T., Tozawa Y., Ohta H., Takamiya K.. ( 2008;). The bacterial stringent response, conserved in chloroplasts, controls plant fertilization. . Plant Cell Physiol 49:, 135–141. [CrossRef][PubMed]
    [Google Scholar]
  33. Meisinger C., Sommer T., Pfanner N.. ( 2000;). Purification of Saccharomcyes cerevisiae mitochondria devoid of microsomal and cytosolic contaminations. . Anal Biochem 287:, 339–342. [CrossRef][PubMed]
    [Google Scholar]
  34. Moris M., Braeken K., Schoeters E., Verreth C., Beullens S., Vanderleyden J., Michiels J.. ( 2005;). Effective symbiosis between Rhizobium etli and Phaseolus vulgaris requires the alarmone ppGpp. . J Bacteriol 187:, 5460–5469. [CrossRef][PubMed]
    [Google Scholar]
  35. Ochi K.. ( 1987a;). Metabolic initiation of differentiation and secondary metabolism by Streptomyces griseus: significance of the stringent response (ppGpp) and GTP content in relation to A factor. . J Bacteriol 169:, 3608–3616.[PubMed]
    [Google Scholar]
  36. Ochi K.. ( 1987b;). Changes in nucleotide pools during sporulation of Streptomyces griseus in submerged culture. . J Gen Microbiol 133:, 2787–2795.
    [Google Scholar]
  37. Ochi K.. ( 2007;). From microbial differentiation to ribosome engineering. . Biosci Biotechnol Biochem 71:, 1373–1386. [CrossRef][PubMed]
    [Google Scholar]
  38. Ochi K., Kandala J. C., Freese E.. ( 1981;). Initiation of Bacillus subtilis sporulation by the stringent response to partial amino acid deprivation. . J Biol Chem 256:, 6866–6875.[PubMed]
    [Google Scholar]
  39. Okamoto S., Ochi K.. ( 1998;). An essential GTP-binding protein functions as a regulator for differentiation in Streptomyces coelicolor. . Mol Microbiol 30:, 107–119. [CrossRef][PubMed]
    [Google Scholar]
  40. Pizarro-Cerdá J., Tedin K.. ( 2004;). The bacterial signal molecule, ppGpp, regulates Salmonella virulence gene expression. . Mol Microbiol 52:, 1827–1844. [CrossRef][PubMed]
    [Google Scholar]
  41. Potrykus K., Cashel M.. ( 2008;). (p)ppGpp: still magical?. Annu Rev Microbiol 62:, 35–51. [CrossRef][PubMed]
    [Google Scholar]
  42. Ratnayake-Lecamwasam M., Serror P., Wong K. W., Sonenshein A. L.. ( 2001;). Bacillus subtilis CodY represses early-stationary-phase genes by sensing GTP levels. . Genes Dev 15:, 1093–1103. [CrossRef][PubMed]
    [Google Scholar]
  43. Rodríguez-Vargas S., Sánchez-García A., Martínez-Rivas J. M., Prieto J. A., Randez-Gil F.. ( 2007;). Fluidization of membrane lipids enhances the tolerance of Saccharomyces cerevisiae to freezing and salt stress. . Appl Environ Microbiol 73:, 110–116. [CrossRef][PubMed]
    [Google Scholar]
  44. Saito N., Xu J., Hosaka T., Okamoto S., Aoki H., Bibb M. J., Ochi K.. ( 2006;). EshA accentuates ppGpp accumulation and is conditionally required for antibiotic production in Streptomyces coelicolor A3(2). . J Bacteriol 188:, 4952–4961. [CrossRef][PubMed]
    [Google Scholar]
  45. Sato M., Takahashi K., Ochiai Y., Hosaka T., Ochi K., Nabeta K.. ( 2009;). Bacterial alarmone, guanosine 5′-diphosphate 3′-diphosphate (ppGpp), predominantly binds the β′ subunit of plastid-encoded plastid RNA polymerase in chloroplasts. . ChemBioChem 10:, 1227–1233. [CrossRef][PubMed]
    [Google Scholar]
  46. Shaw R. J., Wilson J. L., Smith K. T., Reines D.. ( 2001;). Regulation of an IMP dehydrogenase gene and its overexpression in drug-sensitive transcription elongation mutants of yeast. . J Biol Chem 276:, 32905–32916. [CrossRef][PubMed]
    [Google Scholar]
  47. Sherman F.. ( 1991;). Getting started with yeast. . Methods Enzymol 194:, 3–21. [CrossRef][PubMed]
    [Google Scholar]
  48. Song M., Kim H. J., Kim E. Y., Shin M., Lee H. C., Hong Y., Rhee J. H., Yoon H., Ryu S.. & other authors ( 2004;). ppGpp-dependent stationary phase induction of genes on Salmonella pathogenicity island 1. . J Biol Chem 279:, 34183–34190. [CrossRef][PubMed]
    [Google Scholar]
  49. Sun J., Hesketh A., Bibb M.. ( 2001;). Functional analysis of relA and rshA, two relA/spoT homologues of Streptomyces coelicolor A3(2). . J Bacteriol 183:, 3488–3498. [CrossRef][PubMed]
    [Google Scholar]
  50. Sun D., Lee G., Lee J. H., Kim H. Y., Rhee H. W., Park S. Y., Kim K. J., Kim Y., Kim B. Y.. & other authors ( 2010;). A metazoan ortholog of SpoT hydrolyzes ppGpp and functions in starvation responses. . Nat Struct Mol Biol 17:, 1188–1194. [CrossRef][PubMed]
    [Google Scholar]
  51. Sy J., Ogawa Y., Lipmann F.. ( 1973;). Nonribosomal synthesis of guanosine 5′,3′-polyphosphates by the ribosomal wash of stringent Escherichia coli. . Proc Natl Acad Sci U S A 70:, 2145–2148. [CrossRef][PubMed]
    [Google Scholar]
  52. Takahashi K., Kasai K., Ochi K.. ( 2004;). Identification of the bacterial alarmone guanosine 5′-diphosphate 3′-diphosphate (ppGpp) in plants. . Proc Natl Acad Sci U S A 101:, 4320–4324. [CrossRef][PubMed]
    [Google Scholar]
  53. Tozawa Y., Nomura Y.. ( 2011;). Signalling by the global regulatory molecule ppGpp in bacteria and chloroplasts of land plants. . Plant Biol (Stuttg) 13:, 699–709. [CrossRef][PubMed]
    [Google Scholar]
  54. Tozawa Y., Nozawa A., Kanno T., Narisawa T., Masuda S., Kasai K., Nanamiya H.. ( 2007;). Calcium-activated (p)ppGpp synthetase in chloroplasts of land plants. . J Biol Chem 282:, 35536–35545. [CrossRef][PubMed]
    [Google Scholar]
  55. van Delden C., Comte R., Bally A. M.. ( 2001;). Stringent response activates quorum sensing and modulates cell density-dependent gene expression in Pseudomonas aeruginosa. . J Bacteriol 183:, 5376–5384. [CrossRef][PubMed]
    [Google Scholar]
  56. van der Biezen E. A., Sun J., Coleman M. J., Bibb M. J., Jones J. D.. ( 2000;). Arabidopsis RelA/SpoT homologs implicate (p)ppGpp in plant signaling. . Proc Natl Acad Sci U S A 97:, 3747–3752. [CrossRef][PubMed]
    [Google Scholar]
  57. Wagner R.. ( 2002;). Regulation of ribosomal RNA synthesis in E. coli: effects of the global regulator guanosine tetraphosphate (ppGpp). . J Mol Microbiol Biotechnol 4:, 331–340.[PubMed]
    [Google Scholar]
  58. Wang G., Tanaka Y., Ochi K.. ( 2010;). The G243D mutation (afsB mutation) in the principal sigma factor σHrdB alters intracellular ppGpp level and antibiotic production in Streptomyces coelicolor A3(2). . Microbiology 156:, 2384–2392. [CrossRef][PubMed]
    [Google Scholar]
  59. Wells D. H., Long S. R.. ( 2002;). The Sinorhizobium meliloti stringent response affects multiple aspects of symbiosis. . Mol Microbiol 43:, 1115–1127. [CrossRef][PubMed]
    [Google Scholar]
  60. Wells D. H., Long S. R.. ( 2003;). Mutations in rpoBC suppress the defects of a Sinorhizobium meliloti relA mutant. . J Bacteriol 185:, 5602–5610. [CrossRef][PubMed]
    [Google Scholar]
  61. Xu J., Tozawa Y., Lai C., Hayashi H., Ochi K.. ( 2002;). A rifampicin resistance mutation in the rpoB gene confers ppGpp-independent antibiotic production in Streptomyces coelicolor A3(2). . Mol Genet Genomics 268:, 179–189. [CrossRef][PubMed]
    [Google Scholar]
  62. Yamada A., Tsutsumi K., Tanimoto S., Ozeki Y.. ( 2003;). Plant RelA/SpoT homolog confers salt tolerance in Escherichia coli and Saccharomyces cerevisiae. . Plant Cell Physiol 44:, 3–9. [CrossRef][PubMed]
    [Google Scholar]
  63. Zhang H. B., Wang C., Zhang L. H.. ( 2004;). The quormone degradation system of Agrobacterium tumefaciens is regulated by starvation signal and stress alarmone (p)ppGpp. . Mol Microbiol 52:, 1389–1401. [CrossRef][PubMed]
    [Google Scholar]
  64. Zhou Y. N., Jin D. J.. ( 1998;). The rpoB mutants destabilizing initiation complexes at stringently controlled promoters behave like “stringent” RNA polymerases in Escherichia coli. . Proc Natl Acad Sci U S A 95:, 2908–2913. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.057638-0
Loading
/content/journal/micro/10.1099/mic.0.057638-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error