1887

Abstract

The Gram-negative plant-pathogenic bacterium pv. employs a type III secretion (T3S) system to translocate effector proteins into plant cells. T3S depends on HrpB2, which is essential for assembly of the extracellular T3S pilus and is itself weakly secreted. To characterize the role of HrpB2, we used a transposon mutagenesis approach, which led to the insertion of pentapeptide-encoding sequences into Complementation studies with HrpB2 mutant derivatives revealed that the N-terminal region of HrpB2 tolerates pentapeptide insertions, whereas insertions in the regions spanning amino acids 60–74 and 93–130, respectively, resulted in a loss of bacterial pathogenicity and T3S, including secretion of HrpB2 itself. The C-terminal region (amino acids 93–130) of HrpB2 contains a conserved VxTLxK amino acid motif that is also present in predicted inner rod proteins from animal-pathogenic bacteria and is required for the contribution of HrpB2 to pilus assembly and T3S. Electron microscopy and fractionation studies revealed that HrpB2 is not a component of the extracellular pilus structure but localizes to the bacterial periplasm and the outer membrane. We therefore propose that the essential contribution of HrpB2 to T3S and pilus assembly is linked to its possible function as a periplasmic component of the T3S system at the base of the pilus.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.057604-0
2012-05-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/5/1334.html?itemId=/content/journal/micro/10.1099/mic.0.057604-0&mimeType=html&fmt=ahah

References

  1. Agrain C., Callebaut I., Journet L., Sorg I., Paroz C., Mota L. J., Cornelis G. R. ( 2005). Characterization of a type III secretion substrate specificity switch (T3S4) domain in YscP from Yersinia enterocolitica . Mol Microbiol 56:54–67 [View Article][PubMed]
    [Google Scholar]
  2. Alegria M. C., Docena C., Khater L., Ramos C. H., da Silva A. C., Farah C. S. ( 2004). New protein-protein interactions identified for the regulatory and structural components and substrates of the type III secretion system of the phytopathogen Xanthomonas axonopodis pathovar citri. J Bacteriol 186:6186–6197[PubMed]
    [Google Scholar]
  3. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. ( 1996). Current Protocols in Molecular Biology New York: Wiley;
    [Google Scholar]
  4. Blocker A., Jouihri N., Larquet E., Gounon P., Ebel F., Parsot C., Sansonetti P., Allaoui A. ( 2001). Structure and composition of the Shigella flexneri “needle complex”, a part of its type III secreton. Mol Microbiol 39:652–663 [View Article][PubMed]
    [Google Scholar]
  5. Bolchi A., Ottonello S., Petrucco S. ( 2005). A general one-step method for the cloning of PCR products. Biotechnol Appl Biochem 42:205–209 [View Article][PubMed]
    [Google Scholar]
  6. Bonas U., Schulte R., Fenselau S., Minsavage G. V., Staskawicz B. J., Stall R. E. ( 1991). Isolation of a gene-cluster from Xanthomonas campestris pv. vesicatoria that determines pathogenicity and the hypersensitive response on pepper and tomato. Mol Plant Microbe Interact 4:81–88
    [Google Scholar]
  7. Botteaux A., Sani M., Kayath C. A., Boekema E. J., Allaoui A. ( 2008). Spa32 interaction with the inner-membrane Spa40 component of the type III secretion system of Shigella flexneri is required for the control of the needle length by a molecular tape measure mechanism. Mol Microbiol 70:1515–1528 [View Article][PubMed]
    [Google Scholar]
  8. Büttner D., Bonas U. ( 2010). Regulation and secretion of Xanthomonas virulence factors. FEMS Microbiol Rev 34:107–133 [View Article][PubMed]
    [Google Scholar]
  9. Büttner D., He S. Y. ( 2009). Type III protein secretion in plant pathogenic bacteria. Plant Physiol 150:1656–1664 [View Article][PubMed]
    [Google Scholar]
  10. Büttner D., Nennstiel D., Klüsener B., Bonas U. ( 2002). Functional analysis of HrpF, a putative type III translocon protein from Xanthomonas campestris pv. vesicatoria. J Bacteriol 184:2389–2398[PubMed]
    [Google Scholar]
  11. Büttner D., Lorenz C., Weber E., Bonas U. ( 2006). Targeting of two effector protein classes to the type III secretion system by a HpaC- and HpaB-dependent protein complex from Xanthomonas campestris pv. vesicatoria . Mol Microbiol 59:513–527[PubMed]
    [Google Scholar]
  12. Büttner D., Noël L., Stuttmann J., Bonas U. ( 2007). Characterization of the nonconserved hpaB-hrpF region in the hrp pathogenicity island from Xanthomonas campestris pv. vesicatoria . Mol Plant Microbe Interact 20:1063–1074[PubMed]
    [Google Scholar]
  13. Canteros B. I. ( 1990). Diversity of plasmids and plasmid-encoded phenotypic traits in Xanthomonas campestris pv. vesicatoria .
    [Google Scholar]
  14. Cappelletti P. A., dos Santos R. F., do Amaral A. M., Homem R. A., Souza T. S., Machado M. A., Farah C. S. ( 2011). Structure-function analysis of the HrpB2-HrcU interaction in the Xanthomonas citri type III secretion system. PLoS ONE 6:e17614[PubMed]
    [Google Scholar]
  15. Daniels M. J., Barber C. E., Turner P. C., Sawczyc M. K., Byrde R. J. W., Fielding A. H. ( 1984). Cloning of genes involved in pathogenicity of Xanthomonas campestris pv. campestris using the broad host range cosmid pLAFR1. EMBO J 3:3323–3328[PubMed]
    [Google Scholar]
  16. Deane J. E., Abrusci P., Johnson S., Lea S. M. ( 2010). Timing is everything: the regulation of type III secretion. Cell Mol Life Sci 67:1065–1075 [View Article][PubMed]
    [Google Scholar]
  17. Engler C., Kandzia R., Marillonnet S. ( 2008). A one pot, one step, precision cloning method with high throughput capability. PLoS ONE 3:e3647 [View Article][PubMed]
    [Google Scholar]
  18. Erhardt M., Namba K., Hughes K. T. ( 2010). Bacterial nanomachines: the flagellum and type III injectisome. Cold Spring Harb Perspect Biol 2:a000299 [View Article][PubMed]
    [Google Scholar]
  19. Escolar L., Van Den Ackerveken G., Pieplow S., Rossier O., Bonas U. ( 2001). Type III secretion and in planta recognition of the Xanthomonas avirulence proteins AvrBs1 and AvrBsT. Mol Plant Pathol 2:287–296 [View Article][PubMed]
    [Google Scholar]
  20. Ferris H. U., Furukawa Y., Minamino T., Kroetz M. B., Kihara M., Namba K., Macnab R. M. ( 2005). FlhB regulates ordered export of flagellar components via autocleavage mechanism. J Biol Chem 280:41236–41242 [View Article][PubMed]
    [Google Scholar]
  21. Figurski D. H., Helinski D. R. ( 1979). Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans . Proc Natl Acad Sci U S A 76:1648–1652 [View Article][PubMed]
    [Google Scholar]
  22. Ghosh P. ( 2004). Process of protein transport by the type III secretion system. Microbiol Mol Biol Rev 68:771–795 [View Article][PubMed]
    [Google Scholar]
  23. He S. Y., Nomura K., Whittam T. S. ( 2004). Type III protein secretion mechanism in mammalian and plant pathogens. Biochim Biophys Acta 1694:181–206 [View Article][PubMed]
    [Google Scholar]
  24. Huguet E., Hahn K., Wengelnik K., Bonas U. ( 1998). hpaA mutants of Xanthomonas campestris pv. vesicatoria are affected in pathogenicity but retain the ability to induce host-specific hypersensitive reaction. Mol Microbiol 29:1379–1390 [View Article][PubMed]
    [Google Scholar]
  25. Jones J. D., Dangl J. L. ( 2006). The plant immune system. Nature 444:323–329 [View Article][PubMed]
    [Google Scholar]
  26. Jones J. B., Lacy G. H., Bouzar H., Stall R. E., Schaad N. W. ( 2004). Reclassification of the xanthomonads associated with bacterial spot disease of tomato and pepper. Syst Appl Microbiol 27:755–762 [View Article][PubMed]
    [Google Scholar]
  27. Kousik C. S., Ritchie D. F. ( 1998). Response of bell pepper cultivars to bacterial spot pathogen races that individually overcome major resistance genes. Plant Dis 82:181–186 [View Article]
    [Google Scholar]
  28. Kovach M. E., Elzer P. H., Hill D. S., Robertson G. T., Farris M. A., Roop R. M. II, Peterson K. M. ( 1995). Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175–176 [View Article][PubMed]
    [Google Scholar]
  29. Kubori T., Matsushima Y., Nakamura D., Uralil J., Lara-Tejero M., Sukhan A., Galán J. E., Aizawa S. I. ( 1998). Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science 280:602–605 [View Article][PubMed]
    [Google Scholar]
  30. Lavander M., Sundberg L., Edqvist P. J., Lloyd S. A., Wolf-Watz H., Forsberg A. ( 2002). Proteolytic cleavage of the FlhB homologue YscU of Yersinia pseudotuberculosis is essential for bacterial survival but not for type III secretion. J Bacteriol 184:4500–4509 [View Article][PubMed]
    [Google Scholar]
  31. Lorenz C., Büttner D. ( 2011). Secretion of early and late substrates of the type III secretion system from Xanthomonas is controlled by HpaC and the C-terminal domain of HrcU. Mol Microbiol 79:447–467 [View Article][PubMed]
    [Google Scholar]
  32. Lorenz C., Schulz S., Wolsch T., Rossier O., Bonas U., Büttner D. ( 2008). HpaC controls substrate specificity of the Xanthomonas type III secretion system. PLoS Pathog 4:e1000094[PubMed]
    [Google Scholar]
  33. Marlovits T. C., Kubori T., Sukhan A., Thomas D. R., Galán J. E., Unger V. M. ( 2004). Structural insights into the assembly of the type III secretion needle complex. Science 306:1040–1042 [View Article][PubMed]
    [Google Scholar]
  34. Marlovits T. C., Kubori T., Lara-Tejero M., Thomas D., Unger V. M., Galán J. E. ( 2006). Assembly of the inner rod determines needle length in the type III secretion injectisome. Nature 441:637–640 [View Article][PubMed]
    [Google Scholar]
  35. Matteï P. J., Faudry E., Job V., Izoré T., Attree I., Dessen A. ( 2011). Membrane targeting and pore formation by the type III secretion system translocon. FEBS J 278:414–426 [View Article][PubMed]
    [Google Scholar]
  36. Ménard R., Sansonetti P. J., Parsot C. ( 1993). Nonpolar mutagenesis of the ipa genes defines IpaB, IpaC, and IpaD as effectors of Shigella flexneri entry into epithelial cells. J Bacteriol 175:5899–5906[PubMed]
    [Google Scholar]
  37. Minamino T., MacNab R. M. ( 2000). Interactions among components of the Salmonella flagellar export apparatus and its substrates. Mol Microbiol 35:1052–1064 [View Article][PubMed]
    [Google Scholar]
  38. Minsavage G. V., Dahlbeck D., Whalen M. C., Kearny B., Bonas U., Staskawicz B. J., Stall R. E. ( 1990). Gene-for-gene relationships specifying disease resistance in Xanthomonas campestris pv. vesicatoria – pepper interactions. Mol Plant Microbe Interact 3:41–47 [View Article]
    [Google Scholar]
  39. Morbitzer R., Elsaesser J., Hausner J., Lahaye T. ( 2011). Assembly of custom TALE-type DNA binding domains by modular cloning. Nucleic Acids Res 39:5790–5799[PubMed]
    [Google Scholar]
  40. Ogino T., Ohno R., Sekiya K., Kuwae A., Matsuzawa T., Nonaka T., Fukuda H., Imajoh-Ohmi S., Abe A. ( 2006). Assembly of the type III secretion apparatus of enteropathogenic Escherichia coli . J Bacteriol 188:2801–2811 [View Article][PubMed]
    [Google Scholar]
  41. Ronald P. C., Staskawicz B. J. ( 1988). The avirulence gene avrBs1 from Xanthomonas campestris pv. vesicatoria encodes a 50-kD protein. Mol Plant Microbe Interact 1:191–198 [View Article][PubMed]
    [Google Scholar]
  42. Rossier O., Wengelnik K., Hahn K., Bonas U. ( 1999). The Xanthomonas Hrp type III system secretes proteins from plant and mammalian bacterial pathogens. Proc Natl Acad Sci U S A 96:9368–9373[PubMed]
    [Google Scholar]
  43. Rossier O., Van den Ackerveken G., Bonas U. ( 2000). HrpB2 and HrpF from Xanthomonas are type III-secreted proteins and essential for pathogenicity and recognition by the host plant. Mol Microbiol 38:828–838[PubMed]
    [Google Scholar]
  44. Ryan R. P., Vorhölter F. J., Potnis N., Jones J. B., Van Sluys M. A., Bogdanove A. J., Dow J. M. ( 2011). Pathogenomics of Xanthomonas: understanding bacterium–plant interactions. Nat Rev Microbiol 9:344–355 [View Article][PubMed]
    [Google Scholar]
  45. Sal-Man N., Deng W., Finlay B. B. ( 2012). EscI – a crucial component of the type III secretion system forms the inner rod structure in enteropathogenic Escherichia coli . Biochem J 442:119–125[PubMed] [CrossRef]
    [Google Scholar]
  46. Sani M., Allaoui A., Fusetti F., Oostergetel G. T., Keegstra W., Boekema E. J. ( 2007). Structural organization of the needle complex of the type III secretion apparatus of Shigella flexneri . Micron 38:291–301 [View Article][PubMed]
    [Google Scholar]
  47. Schulz S., Büttner D. ( 2011). Functional characterization of the type III secretion substrate specificity switch protein HpaC from Xanthomonas campestris pv. vesicatoria . Infect Immun 79:2998–3011 [View Article][PubMed]
    [Google Scholar]
  48. Sorg I., Wagner S., Amstutz M., Müller S. A., Broz P., Lussi Y., Engel A., Cornelis G. R. ( 2007). YscU recognizes translocators as export substrates of the Yersinia injectisome. EMBO J 26:3015–3024[PubMed]
    [Google Scholar]
  49. Szczesny R., Jordan M., Schramm C., Schulz S., Cogez V., Bonas U., Büttner D. ( 2010). Functional characterization of the Xcs and Xps type II secretion systems from the plant pathogenic bacterium Xanthomonas campestris pv vesicatoria . New Phytol 187:983–1002 [View Article][PubMed]
    [Google Scholar]
  50. Thein M., Sauer G., Paramasivam N., Grin I., Linke D. ( 2010). Efficient subfractionation of Gram-negative bacteria for proteomics studies. J Proteome Res 9:6135–6147[PubMed]
    [Google Scholar]
  51. Vieira J., Messing J. ( 1987). Production of single-stranded plasmid DNA. Methods Enzymol 153:3–11 [View Article][PubMed]
    [Google Scholar]
  52. Weber E., Ojanen-Reuhs T., Huguet E., Hause G., Romantschuk M., Korhonen T. K., Bonas U., Koebnik R. ( 2005). The type III-dependent Hrp pilus is required for productive interaction of Xanthomonas campestris pv. vesicatoria with pepper host plants. J Bacteriol 187:2458–2468[PubMed]
    [Google Scholar]
  53. Weber E., Berger C., Bonas U., Koebnik R. ( 2007). Refinement of the Xanthomonas campestris pv. vesicatoria hrpD and hrpE operon structure. Mol Plant Microbe Interact 20:559–567[PubMed]
    [Google Scholar]
  54. Wengelnik K., Marie C., Russel M., Bonas U. ( 1996a). Expression and localization of HrpA1, a protein of Xanthomonas campestris pv. vesicatoria essential for pathogenicity and induction of the hypersensitive reaction. J Bacteriol 178:1061–1069[PubMed]
    [Google Scholar]
  55. Wengelnik K., Van den Ackerveken G., Bonas U. ( 1996b). HrpG, a key hrp regulatory protein of Xanthomonas campestris pv. vesicatoria is homologous to two-component response regulators. Mol Plant Microbe Interact 9:704–712[PubMed]
    [Google Scholar]
  56. Wengelnik K., Rossier O., Bonas U. ( 1999). Mutations in the regulatory gene hrpG of Xanthomonas campestris pv. vesicatoria result in constitutive expression of all hrp genes. J Bacteriol 181:6828–6831[PubMed]
    [Google Scholar]
  57. Wood S. E., Jin J., Lloyd S. A. ( 2008). YscP and YscU switch the substrate specificity of the Yersinia type III secretion system by regulating export of the inner rod protein YscI. J Bacteriol 190:4252–4262 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.057604-0
Loading
/content/journal/micro/10.1099/mic.0.057604-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error