1887

Abstract

The gene, which is chromosomally located in a gene cluster involved in NAD biosynthesis, negatively regulates expression of the cluster genes, i.e. , , and itself. Although encodes a member of the recently identified NrtR family of transcriptional regulators, whether or not the NdnR protein directly regulates these NAD biosynthesis genes remains to be verified. Here, two NdnR binding sites in the promoter region of the operon in were confirmed by DNA binding assay and analysis of expression of the chromosomally integrated promoter– reporter fusion. Electrophoretic mobility shift assay revealed that the NdnR protein binds to the 5′-upstream region of , and that the binding is significantly enhanced by NAD. Mutation in two 21 bp NdnR binding motifs in the promoter region inhibited the binding of NdnR . The mutation also enhanced the promoter activity in cells cultured in the presence of nicotinate, which is utilized in NAD biosynthesis, resulting in the loss of the repression in response to an exogenous NAD precursor; this is consistent with the effect of deletion of reported in our previous study. These results indicate that NAD acts as a co-repressor for the NdnR protein that directly regulates the operon involved in NAD biosynthesis; the NAD–NdnR regulatory system likely plays an important role in the control of NAD homeostasis in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.057513-0
2012-04-01
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/4/975.html?itemId=/content/journal/micro/10.1099/mic.0.057513-0&mimeType=html&fmt=ahah

References

  1. Baumbach J., Wittkop T., Kleindt C. K., Tauch A.. ( 2009;). Integrated analysis and reconstruction of microbial transcriptional gene regulatory networks using CoryneRegNet. Nat Protoc4:992–1005 [CrossRef][PubMed]
    [Google Scholar]
  2. Brune I., Brinkrolf K., Kalinowski J., Pühler A., Tauch A.. ( 2005;). The individual and common repertoire of DNA-binding transcriptional regulators of Corynebacterium glutamicum, Corynebacterium efficiens, Corynebacterium diphtheriae and Corynebacterium jeikeium deduced from the complete genome sequences. BMC Genomics6:86 [CrossRef][PubMed]
    [Google Scholar]
  3. Gazzaniga F., Stebbins R., Chang S. Z., McPeek M. A., Brenner C.. ( 2009;). Microbial NAD metabolism: lessons from comparative genomics. Microbiol Mol Biol Rev73:529–541 [CrossRef][PubMed]
    [Google Scholar]
  4. Gerasimova A. V., Gelfand M. S.. ( 2005;). Evolution of the NadR regulon in Enterobacteriaceae. J Bioinform Comput Biol3:1007–1019 [CrossRef][PubMed]
    [Google Scholar]
  5. Grose J. H., Bergthorsson U., Roth J. R.. ( 2005;). Regulation of NAD synthesis by the trifunctional NadR protein of Salmonella enterica. J Bacteriol187:2774–2782 [CrossRef][PubMed]
    [Google Scholar]
  6. Hermann T.. ( 2003;). Industrial production of amino acids by coryneform bacteria. J Biotechnol104:155–172 [CrossRef][PubMed]
    [Google Scholar]
  7. Huang N., De Ingeniis J., Galeazzi L., Mancini C., Korostelev Y. D., Rakhmaninova A. B., Gelfand M. S., Rodionov D. A., Raffaelli N., Zhang H.. ( 2009;). Structure and function of an ADP-ribose-dependent transcriptional regulator of NAD metabolism. Structure17:939–951 [CrossRef][PubMed]
    [Google Scholar]
  8. Inui M., Kawaguchi H., Murakami S., Vertès A. A., Yukawa H.. ( 2004a;). Metabolic engineering of Corynebacterium glutamicum for fuel ethanol production under oxygen-deprivation conditions. J Mol Microbiol Biotechnol8:243–254 [CrossRef][PubMed]
    [Google Scholar]
  9. Inui M., Murakami S., Okino S., Kawaguchi H., Vertès A. A., Yukawa H.. ( 2004b;). Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions. J Mol Microbiol Biotechnol7:182–196 [CrossRef][PubMed]
    [Google Scholar]
  10. Inui M., Suda M., Okino S., Nonaka H., Puskás L. G., Vertès A. A., Yukawa H.. ( 2007;). Transcriptional profiling of Corynebacterium glutamicum metabolism during organic acid production under oxygen deprivation conditions. Microbiology153:2491–2504 [CrossRef][PubMed]
    [Google Scholar]
  11. Liebl W.. ( 2005;). Corynebacterium taxonomy. Handbook of Corynebacterium glutamicum9–34 Eggeling L., Bott M.. Boca Raton, FL: CRC Press; [CrossRef]
    [Google Scholar]
  12. Magni G., Amici A., Emanuelli M., Raffaelli N., Ruggieri S.. ( 1999;). Enzymology of NAD+ synthesis. Adv Enzymol Relat Areas Mol Biol73:135–182, xi [CrossRef][PubMed]
    [Google Scholar]
  13. Miller J. H.. ( 1972;). Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  14. Okino S., Noburyu R., Suda M., Jojima T., Inui M., Yukawa H.. ( 2008a;). An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain. Appl Microbiol Biotechnol81:459–464 [CrossRef][PubMed]
    [Google Scholar]
  15. Okino S., Suda M., Fujikura K., Inui M., Yukawa H.. ( 2008b;). Production of d-lactic acid by Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol78:449–454 [CrossRef][PubMed]
    [Google Scholar]
  16. Pátek M., Nešvera J.. ( 2011;). Sigma factors and promoters in Corynebacterium glutamicum. J Biotechnol154:101–113 [CrossRef][PubMed]
    [Google Scholar]
  17. Penfound T., Foster J. W.. ( 1999;). NAD-dependent DNA-binding activity of the bifunctional NadR regulator of Salmonella typhimurium. J Bacteriol181:648–655[PubMed]
    [Google Scholar]
  18. Rodionov D. A., De Ingeniis J., Mancini C., Cimadamore F., Zhang H., Osterman A. L., Raffaelli N.. ( 2008a;). Transcriptional regulation of NAD metabolism in bacteria: NrtR family of Nudix-related regulators. Nucleic Acids Res36:2047–2059 [CrossRef][PubMed]
    [Google Scholar]
  19. Rodionov D. A., Li X., Rodionova I. A., Yang C., Sorci L., Dervyn E., Martynowski D., Zhang H., Gelfand M. S., Osterman A. L.. ( 2008b;). Transcriptional regulation of NAD metabolism in bacteria: genomic reconstruction of NiaR (YrxA) regulon. Nucleic Acids Res36:2032–2046 [CrossRef][PubMed]
    [Google Scholar]
  20. Rossolillo P., Marinoni I., Galli E., Colosimo A., Albertini A. M.. ( 2005;). YrxA is the transcriptional regulator that represses de novo NAD biosynthesis in Bacillus subtilis. J Bacteriol187:7155–7160 [CrossRef][PubMed]
    [Google Scholar]
  21. Sambrook J., Fritsch E. F., Maniatis T.. ( 1989;). Molecular Cloning Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  22. Smith K. M., Cho K. M., Liao J. C.. ( 2010;). Engineering Corynebacterium glutamicum for isobutanol production. Appl Microbiol Biotechnol87:1045–1055 [CrossRef][PubMed]
    [Google Scholar]
  23. Teramoto H., Shirai T., Inui M., Yukawa H.. ( 2008;). Identification of a gene encoding a transporter essential for utilization of C4 dicarboxylates in Corynebacterium glutamicum. Appl Environ Microbiol74:5290–5296 [CrossRef][PubMed]
    [Google Scholar]
  24. Teramoto H., Suda M., Inui M., Yukawa H.. ( 2010;). Regulation of the expression of genes involved in NAD de novo biosynthesis in Corynebacterium glutamicum. Appl Environ Microbiol76:5488–5495 [CrossRef][PubMed]
    [Google Scholar]
  25. Vertès A. A., Inui M., Kobayashi M., Kurusu Y., Yukawa H.. ( 1993;). Presence of mrr- and mcr-like restriction systems in coryneform bacteria. Res Microbiol144:181–185 [CrossRef][PubMed]
    [Google Scholar]
  26. Wendisch V. F., Bott M., Eikmanns B. J.. ( 2006;). Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for biotechnological production of organic acids and amino acids. Curr Opin Microbiol9:268–274 [CrossRef][PubMed]
    [Google Scholar]
  27. Yukawa H., Omumasaba C. A., Nonaka H., Kós P., Okai N., Suzuki N., Suda M., Tsuge Y., Watanabe J.. & other authors ( 2007;). Comparative analysis of the Corynebacterium glutamicum group and complete genome sequence of strain R. Microbiology153:1042–1058 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.057513-0
Loading
/content/journal/micro/10.1099/mic.0.057513-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error