1887

Abstract

Iron uptake and transcriptional regulation by the enantiomeric siderophores pyochelin (Pch) and enantio-pyochelin (EPch) of and , respectively, are stereospecific processes. The iron-loaded forms of Pch (ferriPch) and of EPch (ferriEPch) are recognized stereospecifically (i) at the outer membrane by the siderophore receptors FptA in and FetA in and (ii) in the cytoplasm by the two AraC-type regulators PchR, which are activated by their cognate siderophore. Here, stereospecific siderophore recognition is shown to occur at the inner membrane also. In , translocation of ferriPch across the inner membrane is carried out by the single-subunit siderophore transporter FptX. In contrast, the uptake of ferriEPch into the cytoplasm of was found to involve a classical periplasmic binding protein-dependent ABC transporter (FetCDE), which is encoded by the operon. Expression of a translational fusion was repressed by ferric ions, and activated by the cognate siderophore bound to PchR, thus resembling the analogous regulation of the ferriPch transport operon . The inner-membrane transporters FetCDE and FptX were expressed in combination with either of the two siderophore receptors FetA and FptA in a siderophore-negative mutant deleted for the operon. Growth tests conducted under iron limitation with ferriPch or ferriEPch as the iron source revealed that FptX was able to transport ferriPch as well as ferriEPch, whereas FetCDE specifically transported ferriEPch. Thus, stereospecific siderophore recognition occurs at the inner membrane by the FetCDE transporter.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.057430-0
2012-05-01
2019-10-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/5/1317.html?itemId=/content/journal/micro/10.1099/mic.0.057430-0&mimeType=html&fmt=ahah

References

  1. Andrews S. C., Robinson A. K., Rodríguez-Quiñones F.. ( 2003;). Bacterial iron homeostasis. . FEMS Microbiol Rev 27:, 215–237. [CrossRef][PubMed]
    [Google Scholar]
  2. Ankenbauer R. G., Quan H. N.. ( 1994;). FptA, the FeIII-pyochelin receptor of Pseudomonas aeruginosa: a phenolate siderophore receptor homologous to hydroxamate siderophore receptors. . J Bacteriol 176:, 307–319.[PubMed]
    [Google Scholar]
  3. Brillet K., Reimmann C., Mislin G. L. A., Noël S., Rognan D., Schalk I. J., Cobessi D.. ( 2011;). Pyochelin enantiomers and their outer-membrane siderophore transporters in fluorescent pseudomonads: structural bases for unique enantiospecific recognition. . J Am Chem Soc 133:, 16503–16509. [CrossRef][PubMed]
    [Google Scholar]
  4. Carmi R., Carmeli S., Levy E., Gough F. J.. ( 1994;). (+)-(S)-dihydroaeruginoic acid, an inhibitor of Septoria tritici and other phytopathogenic fungi and bacteria, produced by Pseudomonas fluorescens. . J Nat Prod 57:, 1200–1205. [CrossRef][PubMed]
    [Google Scholar]
  5. de Lorenzo V., Wee S., Herrero M., Neilands J. B.. ( 1987;). Operator sequences of the aerobactin operon of plasmid ColV-K30 binding the ferric uptake regulation (fur) repressor. . J Bacteriol 169:, 2624–2630.[PubMed]
    [Google Scholar]
  6. Farinha M. A., Kropinski A. M.. ( 1990;). High efficiency electroporation of Pseudomonas aeruginosa using frozen cell suspensions. . FEMS Microbiol Lett 58:, 221–225.[PubMed]
    [Google Scholar]
  7. Fetherston J. D., Bertolino V. J., Perry R. D.. ( 1999;). YbtP and YbtQ: two ABC transporters required for iron uptake in Yersinia pestis. . Mol Microbiol 32:, 289–299. [CrossRef][PubMed]
    [Google Scholar]
  8. Heeb S., Blumer C., Haas D.. ( 2002;). Regulatory RNA as mediator in GacA/RsmA-dependent global control of exoproduct formation in Pseudomonas fluorescens CHA0. . J Bacteriol 184:, 1046–1056. [CrossRef][PubMed]
    [Google Scholar]
  9. Hoegy F., Lee X., Noel S., Rognan D., Mislin G. L., Reimmann C., Schalk I. J.. ( 2009;). Stereospecificity of the siderophore pyochelin outer membrane transporters in fluorescent pseudomonads. . J Biol Chem 284:, 14949–14957. [CrossRef][PubMed]
    [Google Scholar]
  10. Koster W.. ( 2005;). Cytoplasmic membrane iron permease systems in the bacterial cell envelope. . Front Biosci 10:, 462–477. [CrossRef][PubMed]
    [Google Scholar]
  11. Laville J., Blumer C., Von Schroetter C., Gaia V., Défago G., Keel C., Haas D.. ( 1998;). Characterization of the hcnABC gene cluster encoding hydrogen cyanide synthase and anaerobic regulation by ANR in the strictly aerobic biocontrol agent Pseudomonas fluorescens CHA0. . J Bacteriol 180:, 3187–3196.[PubMed]
    [Google Scholar]
  12. Liu P. V., Shokrani F.. ( 1978;). Biological activities of pyochelins: iron-chelating agents of Pseudomonas aeruginosa. . Infect Immun 22:, 878–890.[PubMed]
    [Google Scholar]
  13. Maurhofer M., Reimmann C., Schmidli-Sacherer P., Heeb S., Haas D., Défago G.. ( 1998;). Salicylic acid biosynthetic genes expressed in Pseudomonas fluorescens strain P3 improve the induction of systemic resistance in tobacco against tobacco necrosis virus. . Phytopathology 88:, 678–684. [CrossRef][PubMed]
    [Google Scholar]
  14. Meyer J.-M., Abdallah M. A.. ( 1978;). The fluorescent pigment of Pseudomonas fluorescens: biosynthesis, purification and physicochemical properties. . J Gen Microbiol 107:, 319–328. [CrossRef]
    [Google Scholar]
  15. Michel L., González N., Jagdeep S., Nguyen-Ngoc T., Reimmann C.. ( 2005;). PchR-box recognition by the AraC-type regulator PchR of Pseudomonas aeruginosa requires the siderophore pyochelin as an effector. . Mol Microbiol 58:, 495–509. [CrossRef][PubMed]
    [Google Scholar]
  16. Michel L., Bachelard A., Reimmann C.. ( 2007;). Ferripyochelin uptake genes are involved in pyochelin-mediated signalling in Pseudomonas aeruginosa. . Microbiology 153:, 1508–1518. [CrossRef][PubMed]
    [Google Scholar]
  17. Miller W. G., Leveau J. H., Lindow S. E.. ( 2000;). Improved gfp and inaZ broad-host-range promoter-probe vectors. . Mol Plant Microbe Interact 13:, 1243–1250. [CrossRef][PubMed]
    [Google Scholar]
  18. Ó Cuív P. O., Clarke P., Lynch D., O’Connell M.. ( 2004;). Identification of rhtX and fptX, novel genes encoding proteins that show homology and function in the utilization of the siderophores rhizobactin 1021 by Sinorhizobium meliloti and pyochelin by Pseudomonas aeruginosa, respectively. . J Bacteriol 186:, 2996–3005. [CrossRef][PubMed]
    [Google Scholar]
  19. Patel H. M., Walsh C. T.. ( 2001;). In vitro reconstitution of the Pseudomonas aeruginosa nonribosomal peptide synthesis of pyochelin: characterization of backbone tailoring thiazoline reductase and N-methyltransferase activities. . Biochemistry 40:, 9023–9031. [CrossRef][PubMed]
    [Google Scholar]
  20. Rinehart K. L., Staley A. L., Wilson S. R., Ankenbauer R. G., Cox C. D.. ( 1995;). Stereochemical assignment of the pyochelins. . J Org Chem 60:, 2786–2791. [CrossRef]
    [Google Scholar]
  21. Roy P. H., Tetu S. G., Larouche A., Elbourne L., Tremblay S., Ren Q., Dodson R., Harkins D., Shay R.. & other authors ( 2010;). Complete genome sequence of the multiresistant taxonomic outlier Pseudomonas aeruginosa PA7. . PLoS ONE 5:, e8842. [CrossRef][PubMed]
    [Google Scholar]
  22. Sambrook J., Russell D. W.. ( 2001;). Molecular Cloning: a Laboratory Manual, , 3rd edn.. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  23. Schnider U., Keel C., Blumer C., Troxler J., Défago G., Haas D.. ( 1995;). Amplification of the housekeeping sigma factor in Pseudomonas fluorescens CHA0 enhances antibiotic production and improves biocontrol abilities. . J Bacteriol 177:, 5387–5392.[PubMed]
    [Google Scholar]
  24. Stanisich V. A., Holloway B. W.. ( 1972;). A mutant sex factor of Pseudomonas aeruginosa. . Genet Res 19:, 91–108. [CrossRef][PubMed]
    [Google Scholar]
  25. Voisard C., Rella M., Haas D.. ( 1988;). Conjugative transfer of plasmid RP1 to soil isolates of Pseudomonas fluorescens is facilitated by certain large RP1 deletions. . FEMS Microbiol Lett 55:, 9–13. [CrossRef]
    [Google Scholar]
  26. Voisard C., Bull C. T., Keel C., Laville J., Maurhofer M., Schnider U., Défago G., Haas D.. ( 1994;). Biocontrol of root diseases by Pseudomonas fluorescens CHA0: current concepts and experimental approaches. . In Molecular Ecology of Rhizosphere Microorganisms, pp. 67–89. Edited by O’Gara F., Dowling D. N., Boesten B... Weinheim:: VCH Publishers;. [CrossRef]
    [Google Scholar]
  27. Watson A. A., Alm R. A., Mattick J. S.. ( 1996;). Construction of improved vectors for protein production in Pseudomonas aeruginosa. . Gene 172:, 163–164. [CrossRef][PubMed]
    [Google Scholar]
  28. Ye R. W., Haas D., Ka J. O., Krishnapillai V., Zimmermann A., Baird C., Tiedje J. M.. ( 1995;). Anaerobic activation of the entire denitrification pathway in Pseudomonas aeruginosa requires Anr, an analog of Fnr. . J Bacteriol 177:, 3606–3609.[PubMed]
    [Google Scholar]
  29. Youard Z. A., Reimmann C.. ( 2010;). Stereospecific recognition of pyochelin and enantio-pyochelin by the PchR proteins in fluorescent pseudomonads. . Microbiology 156:, 1772–1782. [CrossRef][PubMed]
    [Google Scholar]
  30. Youard Z. A., Mislin G. L., Majcherczyk P. A., Schalk I. J., Reimmann C.. ( 2007;). Pseudomonas fluorescens CHA0 produces enantio-pyochelin, the optical antipode of the Pseudomonas aeruginosa siderophore pyochelin. . J Biol Chem 282:, 35546–35553. [CrossRef][PubMed]
    [Google Scholar]
  31. Youard Z. A., Wenner N., Reimmann C.. ( 2011;). Iron acquisition with the natural siderophore enantiomers pyochelin and enantio-pyochelin in Pseudomonas species. . Biometals 24:, 513–522. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.057430-0
Loading
/content/journal/micro/10.1099/mic.0.057430-0
Loading

Data & Media loading...

Supplementary material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error