1887

Abstract

Fur (ferric uptake regulator) is an iron-responsive transcriptional regulator in many bacterial species, and the mutant of ATCC 17616 exhibits pleiotropic phenotypes, such as an inability to efficiently use several carbon sources, as well as high sensitivity to hydrogen peroxide (HO), paraquat (a superoxide-producing compound) and nitric oxide (NO). To gain more insight into the pleiotropic role of the Fur protein of ATCC 17616, spontaneous suppressor mutants of the ATCC 17616 mutant that restored tolerance to NO were isolated and characterized in this study. The microarray-based comparative genomic analysis and subsequent sequencing analysis indicated that such suppressor mutants had a 2 bp deletion in the gene, whose orthologues encode HO-responsive transcriptional regulators in other bacterial species. The suppressor mutants and the reconstructed double-deletion mutant showed indistinguishable phenotypes in that they were all (i) more resistant than the mutant to HO, superoxide, NO and streptonigrin (an iron-activated antibiotic) and (ii) able to use carbon sources that cannot efficiently support the growth of the mutant. These results clearly indicate that the mutation suppressed the pleiotropic effect of the mutant. The double mutants were found to overexpress the KatG (catalase/peroxidase) and AhpC1 and AhpD (alkyl hydroperoxide reductase subunits C and D) proteins, and their enzymic activities to remove reactive oxygen and nitrogen species were suggested to be responsible for the suppression of phenotypes caused by the mutation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.057372-0
2012-05-01
2019-08-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/5/1284.html?itemId=/content/journal/micro/10.1099/mic.0.057372-0&mimeType=html&fmt=ahah

References

  1. Albert T. J., Dailidiene D., Dailide G., Norton J. E., Kalia A., Richmond T. A., Molla M., Singh J., Green R. D., Berg D. E.. ( 2005;). Mutation discovery in bacterial genomes: metronidazole resistance in Helicobacter pylori. . Nat Methods 2:, 951–953. [CrossRef][PubMed]
    [Google Scholar]
  2. Andrews S. C., Robinson A. K., Rodríguez-Quiñones F.. ( 2003;). Bacterial iron homeostasis. . FEMS Microbiol Rev 27:, 215–237. [CrossRef][PubMed]
    [Google Scholar]
  3. Ausubel F. M., Brent R., Kingston E. R., Moore D. D., Seidman G. J., Smith A. J., Struhk K.. ( 1991;). Current Protocols in Molecular Biology. New York:: Wiley;.
    [Google Scholar]
  4. Bryk R., Griffin P., Nathan C.. ( 2000;). Peroxynitrite reductase activity of bacterial peroxiredoxins. . Nature 407:, 211–215. [CrossRef][PubMed]
    [Google Scholar]
  5. Coenye T., Vandamme P.. ( 2003;). Diversity and significance of Burkholderia species occupying diverse ecological niches. . Environ Microbiol 5:, 719–729. [CrossRef][PubMed]
    [Google Scholar]
  6. Cornelis P., Wei Q., Andrews S. C., Vinckx T.. ( 2011;). Iron homeostasis and management of oxidative stress response in bacteria. . Metallomics 3:, 540–549. [CrossRef][PubMed]
    [Google Scholar]
  7. Figurski D. H., Helinski D. R.. ( 1979;). Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. . Proc Natl Acad Sci U S A 76:, 1648–1652. [CrossRef][PubMed]
    [Google Scholar]
  8. Flint D. H., Tuminello J. F., Emptage M. H.. ( 1993;). The inactivation of Fe–S cluster containing hydrolyases by superoxide. . J Biol Chem 268:, 22369–22376.[PubMed]
    [Google Scholar]
  9. Heeb S., Itoh Y., Nishijyo T., Schnider U., Keel C., Wade J., Walsh U., O’Gara F., Haas D.. ( 2000;). Small, stable shuttle vectors based on the minimal pVS1 replicon for use in Gram-negative, plant-associated bacteria. . Mol Plant Microbe Interact 13:, 232–237. [CrossRef][PubMed]
    [Google Scholar]
  10. Hoang T. T., Karkhoff-Schweizer R. R., Kutchma A. J., Schweizer H. P.. ( 1998;). A broad-host-range Flp–FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. . Gene 212:, 77–86. [CrossRef][PubMed]
    [Google Scholar]
  11. Imlay J. A., Linn S.. ( 1986;). Bimodal pattern of killing of DNA-repair-defective or anoxically grown Escherichia coli by hydrogen peroxide. . J Bacteriol 166:, 519–527.[PubMed]
    [Google Scholar]
  12. Imlay J. A., Linn S.. ( 1988;). DNA damage and oxygen radical toxicity. . Science 240:, 1302–1309. [CrossRef][PubMed]
    [Google Scholar]
  13. Jittawuttipoka T., Buranajitpakorn S., Vattanaviboon P., Mongkolsuk S.. ( 2009;). The catalase-peroxidase KatG is required for virulence of Xanthomonas campestris pv. campestris in a host plant by providing protection against low levels of H2O2.. J Bacteriol 191:, 7372–7377. [CrossRef][PubMed]
    [Google Scholar]
  14. Justino M. C., Almeida C. C., Teixeira M., Saraiva L. M.. ( 2007;). Escherichia coli di-iron YtfE protein is necessary for the repair of stress-damaged iron-sulfur clusters. . J Biol Chem 282:, 10352–10359. [CrossRef][PubMed]
    [Google Scholar]
  15. Kehres D. G., Janakiraman A., Slauch J. M., Maguire M. E.. ( 2002;). Regulation of Salmonella enterica serovar Typhimurium mntH transcription by H2O2, Fe2+, and Mn2+. . J Bacteriol 184:, 3151–3158. [CrossRef][PubMed]
    [Google Scholar]
  16. Keyer K., Imlay J. A.. ( 1996;). Superoxide accelerates DNA damage by elevating free-iron levels. . Proc Natl Acad Sci U S A 93:, 13635–13640. [CrossRef][PubMed]
    [Google Scholar]
  17. Komatsu H., Imura Y., Ohori A., Nagata Y., Tsuda M.. ( 2003;). Distribution and organization of auxotrophic genes on the multichromosomal genome of Burkholderia multivorans ATCC 17616. . J Bacteriol 185:, 3333–3343. [CrossRef][PubMed]
    [Google Scholar]
  18. Kovach M. E., Elzer P. H., Hill D. S., Robertson G. T., Farris M. A., Roop R. M. II, Peterson K. M.. ( 1995;). Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. . Gene 166:, 175–176. [CrossRef][PubMed]
    [Google Scholar]
  19. Lee J. W., Helmann J. D.. ( 2007;). Functional specialization within the Fur family of metalloregulators. . Biometals 20:, 485–499. [CrossRef][PubMed]
    [Google Scholar]
  20. Lee J. H., Yeo W. S., Roe J. H.. ( 2004;). Induction of the sufA operon encoding Fe–S assembly proteins by superoxide generators and hydrogen peroxide: involvement of OxyR, IHF and an unidentified oxidant-responsive factor. . Mol Microbiol 51:, 1745–1755. [CrossRef][PubMed]
    [Google Scholar]
  21. Lee K. C., Yeo W. S., Roe J. H.. ( 2008;). Oxidant-responsive induction of the suf operon, encoding a Fe–S assembly system, through Fur and IscR in Escherichia coli. . J Bacteriol 190:, 8244–8247. [CrossRef][PubMed]
    [Google Scholar]
  22. Lefebre M. D., Flannagan R. S., Valvano M. A.. ( 2005;). A minor catalase/peroxidase from Burkholderia cenocepacia is required for normal aconitase activity. . Microbiology 151:, 1975–1985. [CrossRef][PubMed]
    [Google Scholar]
  23. Lessie T. G., Hendrickson W., Manning B. D., Devereux R.. ( 1996;). Genomic complexity and plasticity of Burkholderia cepacia. . FEMS Microbiol Lett 144:, 117–128. [CrossRef][PubMed]
    [Google Scholar]
  24. Lindgren H., Honn M., Golovlev I., Kadzhaev K., Conlan W., Sjöstedt A.. ( 2009;). The 58-kilodalton major virulence factor of Francisella tularensis is required for efficient utilization of iron. . Infect Immun 77:, 4429–4436. [CrossRef][PubMed]
    [Google Scholar]
  25. Loprasert S., Sallabhan R., Whangsuk W., Mongkolsuk S.. ( 2003a;). Compensatory increase in ahpC gene expression and its role in protecting Burkholderia pseudomallei against reactive nitrogen intermediates. . Arch Microbiol 180:, 498–502. [CrossRef][PubMed]
    [Google Scholar]
  26. Loprasert S., Whangsuk W., Sallabhan R., Mongkolsuk S.. ( 2003b;). Regulation of the katG–dpsA operon and the importance of KatG in survival of Burkholderia pseudomallei exposed to oxidative stress. . FEBS Lett 542:, 17–21. [CrossRef][PubMed]
    [Google Scholar]
  27. Mahenthiralingam E., Coenye T., Chung J. W., Speert D. P., Govan J. R., Taylor P., Vandamme P.. ( 2000;). Diagnostically and experimentally useful panel of strains from the Burkholderia cepacia complex. . J Clin Microbiol 38:, 910–913.[PubMed]
    [Google Scholar]
  28. Mahenthiralingam E., Urban T. A., Goldberg J. B.. ( 2005;). The multifarious, multireplicon Burkholderia cepacia complex. . Nat Rev Microbiol 3:, 144–156. [CrossRef][PubMed]
    [Google Scholar]
  29. Mahenthiralingam E., Baldwin A., Dowson C. G.. ( 2008;). Burkholderia cepacia complex bacteria: opportunistic pathogens with important natural biology. . J Appl Microbiol 104:, 1539–1551. [CrossRef][PubMed]
    [Google Scholar]
  30. Maniatis T., Fritsch E. F., Sambrook J.. ( 1982;). Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  31. McCormick M. L., Buettner G. R., Britigan B. E.. ( 1998;). Endogenous superoxide dismutase levels regulate iron-dependent hydroxyl radical formation in Escherichia coli exposed to hydrogen peroxide. . J Bacteriol 180:, 622–625.[PubMed]
    [Google Scholar]
  32. Ochsner U. A., Vasil A. I., Vasil M. L.. ( 1995;). Role of the ferric uptake regulator of Pseudomonas aeruginosa in the regulation of siderophores and exotoxin A expression: purification and activity on iron-regulated promoters. . J Bacteriol 177:, 7194–7201.[PubMed]
    [Google Scholar]
  33. Outten F. W., Djaman O., Storz G.. ( 2004;). A suf operon requirement for Fe–S cluster assembly during iron starvation in Escherichia coli. . Mol Microbiol 52:, 861–872. [CrossRef][PubMed]
    [Google Scholar]
  34. Peeters E., Sass A., Mahenthiralingam E., Nelis H., Coenye T.. ( 2010;). Transcriptional response of Burkholderia cenocepacia J2315 sessile cells to treatments with high doses of hydrogen peroxide and sodium hypochlorite. . BMC Genomics 11:, 90. [CrossRef][PubMed]
    [Google Scholar]
  35. Reiter T. A., Pang B., Dedon P., Demple B.. ( 2006;). Resistance to nitric oxide-induced necrosis in heme oxygenase-1 overexpressing pulmonary epithelial cells associated with decreased lipid peroxidation. . J Biol Chem 281:, 36603–36612. [CrossRef][PubMed]
    [Google Scholar]
  36. Riemer J., Hoepken H. H., Czerwinska H., Robinson S. R., Dringen R.. ( 2004;). Colorimetric ferrozine-based assay for the quantitation of iron in cultured cells. . Anal Biochem 331:, 370–375. [CrossRef][PubMed]
    [Google Scholar]
  37. Sambrook J., Russell W. D.. ( 2001;). Molecular Cloning: a Laboratory Manual, , 3rd edn.. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  38. Sambrook J., Fritsch E. F., Maniatis T.. ( 1989;). Molecular Cloning: a Laboratory Manual, , 2nd edn.. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  39. Schwyn B., Neilands J. B.. ( 1987;). Universal chemical assay for the detection and determination of siderophores. . Anal Biochem 160:, 47–56. [CrossRef][PubMed]
    [Google Scholar]
  40. Sudhamsu J., Crane B. R.. ( 2009;). Bacterial nitric oxide synthases: what are they good for?. Trends Microbiol 17:, 212–218. [CrossRef][PubMed]
    [Google Scholar]
  41. Tao K., Makino K., Yonei S., Nakata A., Shinagawa H.. ( 1991;). Purification and characterization of the Escherichia coli OxyR protein, the positive regulator for a hydrogen peroxide-inducible regulon. . J Biochem 109:, 262–266.[PubMed]
    [Google Scholar]
  42. Wei Q., Le Minh P. N., Dötsch A., Hildebrand F., Panmanee W., Elfarash A., Schulz S., Plaisance S., Charlier D.. & other authors ( 2012;). Global regulation of gene expression by OxyR in an important human opportunistic pathogen. . Nucleic Acids Res (in press). [CrossRef][PubMed]
    [Google Scholar]
  43. Wendehenne D., Pugin A., Klessig D. F., Durner J.. ( 2001;). Nitric oxide: comparative synthesis and signaling in animal and plant cells. . Trends Plant Sci 6:, 177–183. [CrossRef][PubMed]
    [Google Scholar]
  44. Wood Z. A., Schröder E., Robin Harris J., Poole L. B.. ( 2003;). Structure, mechanism and regulation of peroxiredoxins. . Trends Biochem Sci 28:, 32–40. [CrossRef][PubMed]
    [Google Scholar]
  45. Yuhara S., Komatsu H., Goto H., Ohtsubo Y., Nagata Y., Tsuda M.. ( 2008;). Pleiotropic roles of iron-responsive transcriptional regulator Fur in Burkholderia multivorans. . Microbiology 154:, 1763–1774. [CrossRef][PubMed]
    [Google Scholar]
  46. Zheng M., Storz G.. ( 2000;). Redox sensing by prokaryotic transcription factors. . Biochem Pharmacol 59:, 1–6. [CrossRef][PubMed]
    [Google Scholar]
  47. Zheng M., Aslund F., Storz G.. ( 1998;). Activation of the OxyR transcription factor by reversible disulfide bond formation. . Science 279:, 1718–1721. [CrossRef][PubMed]
    [Google Scholar]
  48. Zheng M., Doan B., Schneider T. D., Storz G.. ( 1999;). OxyR and SoxRS regulation of fur. . J Bacteriol 181:, 4639–4643.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.057372-0
Loading
/content/journal/micro/10.1099/mic.0.057372-0
Loading

Data & Media loading...

Supplementary material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error