1887

Abstract

Plasmid curing has shown that the ability to use glycerol as a carbon source is plasmid-encoded in . We isolated the locus responsible for glycerol utilization from plasmid pRleVF39c in bv. VF39. This region was analyzed by DNA sequencing and mutagenesis. The locus encompasses a gene encoding GlpR (a DeoR regulator), genes encoding an ABC transporter, and genes and , encoding a kinase and dehydrogenase, respectively. All the genes except the regulatory gene were organized into a single operon, and were required for growth on glycerol. The operon was strongly induced by both glycerol and glycerol 3-phosphate, as well as by pea seed exudate. GlpR repressed the operon in the absence of inducer. Mutation of genes encoding the ABC transporter abolished all transport of glycerol in transport assays using radiolabelled glycerol. This confirms that, unlike in other organisms such as and , which use facilitated diffusion, glycerol uptake occurs by an active process in . Since the locus is highly conserved in all sequenced and strains, as well as in spp. and spp. and other alphaproteobacteria, this process for glycerol uptake is probably widespread. Mutants unable to use glycerol were deficient in competitiveness for nodulation of peas compared with the wild-type, suggesting that glycerol catabolism confers an advantage upon the bacterium in the rhizosphere or in the infection thread.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.057281-0
2012-05-01
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/5/1369.html?itemId=/content/journal/micro/10.1099/mic.0.057281-0&mimeType=html&fmt=ahah

References

  1. Alexeyev M. F., Shokolenko I. N., Croughan T. P.. ( 1995;). Improved antibiotic-resistance gene cassettes and omega elements for Escherichia coli vector construction and in vitro deletion/insertion mutagenesis. Gene160:63–67 [CrossRef][PubMed]
    [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J.. ( 1990;). Basic local alignment search tool. J Mol Biol215:403–410[CrossRef]
    [Google Scholar]
  3. Arias A., Martínez-Drets G.. ( 1976;). Glycerol metabolism in Rhizobium . Can J Microbiol22:150–153 [CrossRef][PubMed]
    [Google Scholar]
  4. Baldani J. I., Weaver R. W., Hynes M. F., Eardly B. D.. ( 1992;). Utilization of carbon substrates, electrophoretic enzyme patterns, and symbiotic performance of plasmid-cured clover rhizobia. Appl Environ Microbiol58:2308–2314[PubMed]
    [Google Scholar]
  5. Baños S., Pérez-Redondo R., Koekman B., Liras P.. ( 2009;). Glycerol utilization gene cluster in Streptomyces clavuligerus . Appl Environ Microbiol75:2991–2995 [CrossRef][PubMed]
    [Google Scholar]
  6. Beijer L., Nilsson R. P., Holmberg C., Rutberg L.. ( 1993;). The glpP and glpF genes of the glycerol regulon in Bacillus subtilis . J Gen Microbiol139:349–359[PubMed][CrossRef]
    [Google Scholar]
  7. Beringer J. E.. ( 1974;). R factor transfer in Rhizobium leguminosarum . J Gen Microbiol84:188–198[PubMed][CrossRef]
    [Google Scholar]
  8. Beringer J. E., Beynon J. L., Buchanan-Wollaston A. V., Johnston A. W. B.. ( 1978;). Transfer of drug-resistance transposon Tn5 to Rhizobium . Nature276:633–634 [CrossRef]
    [Google Scholar]
  9. Brom S., García de los Santos A., Stepkowsky T., Flores M., Dávila G., Romero D., Palacios R.. ( 1992;). Different plasmids of Rhizobium leguminosarum bv. phaseoli are required for optimal symbiotic performance. J Bacteriol174:5183–5189[PubMed]
    [Google Scholar]
  10. Brom S., García-de los Santos A., Cervantes L., Palacios R., Romero D.. ( 2000;). In Rhizobium etli symbiotic plasmid transfer, nodulation competitivity and cellular growth require interaction among different replicons. Plasmid44:34–43 [CrossRef][PubMed]
    [Google Scholar]
  11. Finan T. M., Kunkel B., De Vos G. F., Signer E. R.. ( 1986;). Second symbiotic megaplasmid in Rhizobium meliloti carrying exopolysaccharide and thiamine synthesis genes. J Bacteriol167:66–72[PubMed]
    [Google Scholar]
  12. Freedberg W. B., Lin E. C. C.. ( 1973;). Three kinds of controls affecting the expression of the glp regulon in Escherichia coli . J Bacteriol115:816–823[PubMed]
    [Google Scholar]
  13. Gaigalat L., Schlüter J. P., Hartmann M., Mormann S., Tauch A., Pühler A., Kalinowski J.. ( 2007;). The DeoR-type transcriptional regulator SugR acts as a repressor for genes encoding the phosphoenolpyruvate : sugar phosphotransferase system (PTS) in Corynebacterium glutamicum . BMC Mol Biol8:104 [CrossRef][PubMed]
    [Google Scholar]
  14. Geddes B. A., Pickering B. S., Poysti N. J., Collins H., Yudistira H., Oresnik I. J.. ( 2010;). A locus necessary for the transport and catabolism of erythritol in Sinorhizobium meliloti . Microbiology156:2970–2981 [CrossRef][PubMed]
    [Google Scholar]
  15. Hoagland D., Arnon D.. ( 1938;). The water-culture method for growing plants without soil. Univ Calif Coll Agric Exp Sta Circ347–353 Berkley, CA:
    [Google Scholar]
  16. Hynes M. F., McGregor N. F.. ( 1990;). Two plasmids other than the nodulation plasmid are necessary for formation of nitrogen-fixing nodules by Rhizobium leguminosarum . Mol Microbiol4:567–574 [CrossRef][PubMed]
    [Google Scholar]
  17. Mulligan J. T., Long S. R.. ( 1985;). Induction of Rhizobium meliloti nodC expression by plant exudate requires nodD . Proc Natl Acad Sci U S A82:6609–6613 [CrossRef][PubMed]
    [Google Scholar]
  18. Nelson E. B.. ( 2004;). Microbial dynamics and interactions in the spermosphere. Annu Rev Phytopathol42:271–309 [CrossRef][PubMed]
    [Google Scholar]
  19. Oresnik I. J., Pacarynuk L. A., O'Brien S. A. P., Yost C. K., Hynes M. F.. ( 1998;). Plasmid-encoded catabolic genes in Rhizobium leguminosarum bv. trifolii: evidence for a plant-inducible rhamnose locus involved in competition for nodulation. Mol Plant Microbe Interact11:1175–1185 [CrossRef]
    [Google Scholar]
  20. Phillips D. A., Sande E. S., Vriezen J. A. C., de Bruijn F. J., Le Rudulier D., Joseph C. M.. ( 1998;). A new genetic locus in Sinorhizobium meliloti is involved in stachydrine utilization. Appl Environ Microbiol64:3954–3960[PubMed]
    [Google Scholar]
  21. Poysti N. J., Oresnik I. J.. ( 2007;). Characterization of Sinorhizobium meliloti triose phosphate isomerase genes. J Bacteriol189:3445–3451 [CrossRef][PubMed]
    [Google Scholar]
  22. Prentki P., Krisch H. M.. ( 1984;). In vitro insertional mutagenesis with a selectable DNA fragment. Gene29:303–313 [CrossRef][PubMed]
    [Google Scholar]
  23. Priefer U. B.. ( 1989;). Genes involved in lipopolysaccharide production and symbiosis are clustered on the chromosome of Rhizobium leguminosarum biovar viciae VF39. J Bacteriol171:6161–6168[PubMed]
    [Google Scholar]
  24. Quandt J., Hynes M. F.. ( 1993;). Versatile suicide vectors which allow direct selection for gene replacement in Gram-negative bacteria. Gene127:15–21 [CrossRef][PubMed]
    [Google Scholar]
  25. Reeve W. G., Tiwari R. P., Worsley P. S., Dilworth M. J., Glenn A. R., Howieson J. G.. ( 1999;). Constructs for insertional mutagenesis, transcriptional signal localization and gene regulation studies in root nodule and other bacteria. Microbiology145:1307–1316 [CrossRef][PubMed]
    [Google Scholar]
  26. Robertsen B. K., Aman P., Darvill A. G., McNeil M., Albersheim P.. ( 1981;). Host-symbiont interactions: V. The structure of acidic extracellular polysaccharides secrected by Rhizobium leguminosarum and Rhizobium trifolii . Plant Physiol67:389–400 [CrossRef][PubMed]
    [Google Scholar]
  27. Ruvkun G. B., Ausubel F. M.. ( 1981;). A general method for site-directed mutagenesis in prokaryotes. Nature289:85–88 [CrossRef][PubMed]
    [Google Scholar]
  28. Sambrook J., Fritsch E. F., Maniatis T.. ( 1989;). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  29. Sanno Y., Wilson T. H., Lin E. C.. ( 1968;). Control of permeation to glycerol in cells of Escherichia coli . Biochem Biophys Res Commun32:344–349 [CrossRef][PubMed]
    [Google Scholar]
  30. Schlüter A., Patschkowski T., Quandt J., Selinger L. B., Weidner S., Krämer M., Zhou L., Hynes M. F., Priefer U. B.. ( 1997;). Functional and regulatory analysis of the two copies of the fixNOQP operon of Rhizobium leguminosarum strain VF39. Mol Plant Microbe Interact10:605–616 [CrossRef][PubMed]
    [Google Scholar]
  31. Schweizer H. P., Po C.. ( 1996;). Regulation of glycerol metabolism in Pseudomonas aeruginosa: characterization of the glpR repressor gene. J Bacteriol178:5215–5221[PubMed]
    [Google Scholar]
  32. Simon R., Priefer U., Pühler A.. ( 1983;). A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Nat Biotechnol1:784–791 [CrossRef]
    [Google Scholar]
  33. Stoscheck C. M.. ( 1990;). Quantitation of protein. Methods Enzymol182:50–68 [CrossRef][PubMed]
    [Google Scholar]
  34. Stowers M. D.. ( 1985;). Carbon metabolism in Rhizobium species. Annu Rev Microbiol39:89–108 [CrossRef][PubMed]
    [Google Scholar]
  35. Streit W. R., Joseph C. M., Phillips D. A.. ( 1996;). Biotin and other water-soluble vitamins are key growth factors for alfalfa root colonization by Rhizobium meliloti 1021. Mol Plant Microbe Interact9:330–338 [CrossRef][PubMed]
    [Google Scholar]
  36. Sweet G., Gandor C., Voegele R., Wittekindt N., Beuerle J., Truniger V., Lin E. C., Boos W.. ( 1990;). Glycerol facilitator of Escherichia coli: cloning of glpF and identification of the glpF product. J Bacteriol172:424–430[PubMed]
    [Google Scholar]
  37. Yost C. K., Rochepeau P., Hynes M. F.. ( 1998;). Rhizobium leguminosarum contains a group of genes that appear to code for methyl-accepting chemotaxis proteins. Microbiology144:1945–1956 [CrossRef][PubMed]
    [Google Scholar]
  38. Yost C. K., Del Bel K. L., Quandt J., Hynes M. F.. ( 2004;). Rhizobium leguminosarum methyl-accepting chemotaxis protein genes are down-regulated in the pea nodule. Arch Microbiol182:505–513 [CrossRef][PubMed]
    [Google Scholar]
  39. Yost C. K., Rath A. M., Noel T. C., Hynes M. F.. ( 2006;). Characterization of genes involved in erythritol catabolism in Rhizobium leguminosarum bv. viciae . Microbiology152:2061–2074 [CrossRef][PubMed]
    [Google Scholar]
  40. Young J. P. W., Crossman L. C., Johnston A. W., Thomson N. R., Ghazoui Z. F., Hull K. H., Wexler M., Curson A. R., Todd J. D.. & other authors ( 2006;). The genome of Rhizobium leguminosarum has recognizable core and accessory components. Genome Biol7:R34 [CrossRef][PubMed]
    [Google Scholar]
  41. Zheng S. H., Kawabata M.. ( 2000;). Exudation of amino acids and sugars from imbibing seeds of several leguminous crops. Jpn J Crop Sci69:380–384 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.057281-0
Loading
/content/journal/micro/10.1099/mic.0.057281-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error