1887

Abstract

, a causative agent of dental caries in humans, adapts to changing environmental conditions, such as pH, in order to survive and cause disease in the oral cavity. Previously, we have shown that increases the proportion of monounsaturated membrane fatty acids as part of its acid-adaptive strategy. Membrane lipids function as carriers of membrane fatty acids and therefore it was hypothesized that lipid backbones themselves could participate in the acid adaptation process. Lipids have been shown to protect other bacterial species from rapid changes in their environment, such as shifts in osmolality and the need for long-term survival. In the present study, we have determined the contribution of cardiolipin (CL) to acid resistance in . Two ORFs have been identified in the genome that encode presumptive synthetic enzymes for the acidic phospholipids: phosphatidylglycerol (PG) synthase (, SMU.2151c) and CL synthase (, SMU.988), which is responsible for condensing two molecules of PG to create CL. A deletion mutant of the presumptive gene was created using PCR-mediated cloning; however, attempts to delete were unsuccessful, indicating that may be essential. Loss of the presumptive gene resulted in the inability of the mutant strain to produce CL, indicating that SMU.988 encodes CL synthase. The defect in rendered the mutant acid sensitive, indicating that CL is required for acid adaptation in . Addition of exogenous CL to the mutant strain alleviated acid sensitivity. MS indicated that could assimilate exogenous CL into the membrane, halting endogenous CL incorporation. This phenomenon was not due to repression, as a gene transcriptional reporter fusion exhibited elevated activity when cells were supplemented with exogenous CL. Lipid analysis, via MS, indicated that CL is a reservoir for monounsaturated fatty acids in . We demonstrated that the mutant exhibits elevated F-ATPase activity but it is nevertheless unable to maintain the normal membrane proton gradient, indicating cytoplasmic acidification. We conclude that the control of lipid backbone synthesis is part of the acid-adaptive repertoire of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.057273-0
2012-08-01
2020-07-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/8/2133.html?itemId=/content/journal/micro/10.1099/mic.0.057273-0&mimeType=html&fmt=ahah

References

  1. Ajdić D., McShan W. M., McLaughlin R. E., Savić G., Chang J., Carson M. B., Primeaux C., Tian R., Kenton S.. & other authors ( 2002;). Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. Proc Natl Acad Sci U S A99:14434–14439 [CrossRef][PubMed]
    [Google Scholar]
  2. Aslanidis C., de Jong P. J.. ( 1990;). Ligation-independent cloning of PCR products (LIC-PCR). Nucleic Acids Res18:6069–6074 [CrossRef][PubMed]
    [Google Scholar]
  3. Bender G. R., Sutton S. V. W., Marquis R. E.. ( 1986;). Acid tolerance, proton permeabilities, and membrane ATPases of oral streptococci. Infect Immun53:331–338[PubMed]
    [Google Scholar]
  4. Bligh E. G., Dyer W. J.. ( 1959;). A rapid method of total lipid extraction and purification. Can J Biochem Physiol37:911–917 [CrossRef][PubMed]
    [Google Scholar]
  5. Fiske C. H., Subbarow Y.. ( 1925;). The colorimetric determination of phosphorus. J Biol Chem66:375–400
    [Google Scholar]
  6. Fozo E. M., Quivey R. G. Jr. ( 2004a;). The fabM gene product of Streptococcus mutans is responsible for the synthesis of monounsaturated fatty acids and is necessary for survival at low pH. J Bacteriol186:4152–4158 [CrossRef][PubMed]
    [Google Scholar]
  7. Fozo E. M., Quivey R. G. Jr. ( 2004b;). Shifts in the membrane fatty acid profile of Streptococcus mutans enhance survival in acidic environments. Appl Environ Microbiol70:929–936 [CrossRef][PubMed]
    [Google Scholar]
  8. Fozo E. M., Kajfasz J. K., Quivey R. G. Jr. ( 2004;). Low pH-induced membrane fatty acid alterations in oral bacteria. FEMS Microbiol Lett238:291–295 [CrossRef][PubMed]
    [Google Scholar]
  9. Fozo E. M., Scott-Anne K., Koo H., Quivey R. G. Jr. ( 2007;). Role of unsaturated fatty acid biosynthesis in virulence of Streptococcus mutans . Infect Immun75:1537–1539 [CrossRef][PubMed]
    [Google Scholar]
  10. Hahn K., Faustoferri R. C., Quivey R. G. Jr. ( 1999;). Induction of an AP endonuclease activity in Streptococcus mutans during growth at low pH. Mol Microbiol31:1489–1498 [CrossRef][PubMed]
    [Google Scholar]
  11. Hiraoka S., Matsuzaki H., Shibuya I.. ( 1993;). Active increase in cardiolipin synthesis in the stationary growth phase and its physiological significance in Escherichia coli . FEBS Lett336:221–224 [CrossRef][PubMed]
    [Google Scholar]
  12. Jerga A., Rock C. O.. ( 2009;). Acyl-acyl carrier protein regulates transcription of fatty acid biosynthetic genes via the FabT repressor in Streptococcus pneumoniae . J Biol Chem284:15364–15368[CrossRef]
    [Google Scholar]
  13. Kuhnert W. L., Quivey R. G. Jr. ( 2003;). Genetic and biochemical characterization of the F-ATPase operon from Streptococcus sanguis 10904. J Bacteriol185:1525–1533 [CrossRef][PubMed]
    [Google Scholar]
  14. Kuhnert W. L., Zheng G., Faustoferri R. C., Quivey R. G. Jr. ( 2004;). The F-ATPase operon promoter of Streptococcus mutans is transcriptionally regulated in response to external pH. J Bacteriol186:8524–8528 [CrossRef][PubMed]
    [Google Scholar]
  15. Lau P. C., Sung C. K., Lee J. H., Morrison D. A., Cvitkovitch D. G.. ( 2002;). PCR ligation mutagenesis in transformable streptococci: application and efficiency. J Microbiol Methods49:193–205 [CrossRef][PubMed]
    [Google Scholar]
  16. Lu Y. J., Rock C. O.. ( 2006;). Transcriptional regulation of fatty acid biosynthesis in Streptococcus pneumoniae . Mol Microbiol59:551–556[CrossRef]
    [Google Scholar]
  17. Maskrey B. H., Bermúdez-Fajardo A., Morgan A. H., Stewart-Jones E., Dioszeghy V., Taylor G. W., Baker P. R., Coles B., Coffey M. J.. & other authors ( 2007;). Activated platelets and monocytes generate four hydroxyphosphatidylethanolamines via lipoxygenase. J Biol Chem282:20151–20163 [CrossRef][PubMed]
    [Google Scholar]
  18. Murchison H. H., Barrett J. F., Cardineau G. A., Curtiss R. III. ( 1986;). Transformation of Streptococcus mutans with chromosomal and shuttle plasmid (pYA629) DNAs. Infect Immun54:273–282[PubMed]
    [Google Scholar]
  19. Parsons J. B., Rock C. O.. ( 2011;). Is bacterial fatty acid synthesis a valid target for antibacterial drug discovery?. Curr Opin Microbiol14:544–549 [CrossRef][PubMed]
    [Google Scholar]
  20. Parsons J. B., Frank M. W., Subramanian C., Saenkham P., Rock C. O.. ( 2011;). Metabolic basis for the differential susceptibility of Gram-positive pathogens to fatty acid synthesis inhibitors. Proc Natl Acad Sci U S A108:15378–15383 [CrossRef][PubMed]
    [Google Scholar]
  21. Perry D., Kuramitsu H. K.. ( 1981;). Genetic transformation of Streptococcus mutans . Infect Immun32:1295–1297[PubMed]
    [Google Scholar]
  22. Qian H., Dao M. L.. ( 1993;). Inactivation of the Streptococcus mutans wall-associated protein A gene (wapA) results in a decrease in sucrose-dependent adherence and aggregation. Infect Immun61:5021–5028[PubMed]
    [Google Scholar]
  23. Quivey R. G. Jr, Faustoferri R. C., Clancy K. A., Marquis R. E.. ( 1995;). Acid adaptation in Streptococcus mutans UA159 alleviates sensitization to environmental stress due to RecA deficiency. FEMS Microbiol Lett126:257–262 [CrossRef][PubMed]
    [Google Scholar]
  24. Raetz C. R., Dowhan W.. ( 1990;). Biosynthesis and function of phospholipids in Escherichia coli . J Biol Chem265:1235–1238[PubMed]
    [Google Scholar]
  25. Ragolia L., Tropp B. E.. ( 1994;). The effects of phosphoglycerides on Escherichia coli cardiolipin synthase. Biochim Biophys Acta1214:323–332[PubMed][CrossRef]
    [Google Scholar]
  26. Romantsov T., Helbig S., Culham D. E., Gill C., Stalker L., Wood J. M.. ( 2007;). Cardiolipin promotes polar localization of osmosensory transporter ProP in Escherichia coli . Mol Microbiol64:1455–1465 [CrossRef][PubMed]
    [Google Scholar]
  27. Rosch J. W., Hsu F. F., Caparon M. G.. ( 2007;). Anionic lipids enriched at the ExPortal of Streptococcus pyogenes . J Bacteriol189:801–806 [CrossRef][PubMed]
    [Google Scholar]
  28. Santiago B., MacGilvray M., Faustoferri R. C., Quivey R. G. Jr. ( 2012;). The branched-chain amino acid aminotransferase encoded by ilvE is involved in acid tolerance in Streptococcus mutans . J Bacteriol194:2010–2019 [CrossRef][PubMed]
    [Google Scholar]
  29. Sato M., Tsuchiya H., Tani H., Yamamoto K., Yamaguchi R., Nitta H., Kanematsu N., Namikawa I., Takagi N.. ( 1991;). Incorporation of fatty acids by Streptococcus mutans . FEMS Microbiol Lett65:117–121 [CrossRef][PubMed]
    [Google Scholar]
  30. Schlame M.. ( 2008;). Cardiolipin synthesis for the assembly of bacterial and mitochondrial membranes. J Lipid Res49:1607–1620 [CrossRef][PubMed]
    [Google Scholar]
  31. Shaw W. V.. ( 1975;). Chloramphenicol acetyltransferase from chloramphenicol-resistant bacteria. Methods Enzymol43:737–755 [CrossRef][PubMed]
    [Google Scholar]
  32. Sheng J., Baldeck J. D., Nguyen P. T. M., Quivey R. G. Jr, Marquis R. E.. ( 2010;). Alkali production associated with malolactic fermentation by oral streptococci and protection against acid, oxidative, or starvation damage. Can J Microbiol56:539–547 [CrossRef][PubMed]
    [Google Scholar]
  33. Sparagna G. C., Johnson C. A., McCune S. A., Moore R. L., Murphy R. C.. ( 2005;). Quantitation of cardiolipin molecular species in spontaneously hypertensive heart failure rats using electrospray ionization mass spectrometry. J Lipid Res46:1196–1204 [CrossRef][PubMed]
    [Google Scholar]
  34. Tropp B. E.. ( 1997;). Cardiolipin synthase from Escherichia coli . Biochim Biophys Acta1348:192–200[PubMed][CrossRef]
    [Google Scholar]
  35. Tsai M., Ohniwa R. L., Kato Y., Takeshita S. L., Ohta T., Saito S., Hayashi H., Morikawa K.. ( 2011;). Staphylococcus aureus requires cardiolipin for survival under conditions of high salinity. BMC Microbiol11:13 [CrossRef][PubMed]
    [Google Scholar]
  36. Zhu L., Kreth J., Cross S. E., Gimzewski J. K., Shi W., Qi F.. ( 2006;). Functional characterization of cell-wall-associated protein WapA in Streptococcus mutans . Microbiology152:2395–2404 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.057273-0
Loading
/content/journal/micro/10.1099/mic.0.057273-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error