1887

Abstract

is an obligate intracellular bacterium that infects free-living amoebae (), and is a potential human pathogen associated with hospital-acquired pneumonia. The attachment mechanism of this bacteria to host cells is crucial in bacterial pathogenesis, yet remains undetermined. Hence, we obtained monoclonal antibodies (mAbs) specific to either or amoebae in an attempt to elucidate the attachment mechanism involved. Hybridomas of 954 clones were assessed, and we found that four mAbs (mAb38, mAb300, mAb311, mAb562) that were reactive to the amoebae significantly inhibited bacterial attachment. All mAbs recognized amoebal released molecules, and mAb311 also recognized the amoebal surface. mAbs reacted with the bacteria not only within amoebae, but also when they were released from amoebae (except mAb311). Furthermore, a serine protease inhibitor had an inhibitory effect on the bacterial attachment to amoebae, although none of the mAbs had any synergistic effect on the inhibition of attachment by the protease inhibitor. Taken together, we conclude that concurrent attachment to amoebae is required for several amoebal released molecules and serine protease activity, implying the existence of a complicated host–parasite relationship.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.057190-0
2012-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/6/1607.html?itemId=/content/journal/micro/10.1099/mic.0.057190-0&mimeType=html&fmt=ahah

References

  1. Abromaitis S., Stephens R. S. ( 2009). Attachment and entry of Chlamydia have distinct requirements for host protein disulfide isomerase. PLoS Pathog 5:e1000357 [View Article][PubMed]
    [Google Scholar]
  2. Anger C., Lally J. M. ( 2008). Acanthamoeba: a review of its potential to cause keratitis, current lens care solution disinfection standards and methodologies, and strategies to reduce patient risk. Eye Contact Lens 34:247–253 [View Article][PubMed]
    [Google Scholar]
  3. Bartlett J. G. ( 2008). Is activity against “atypical” pathogens necessary in the treatment protocols for community-acquired pneumonia? Issues with combination therapy. Clin Infect Dis 47:Suppl. 3S232–S236 [View Article][PubMed]
    [Google Scholar]
  4. Baud D., Goy G., Osterheld M. C., Borel N., Vial Y., Pospischil A., Greub G. ( 2011). Waddlia chondrophila: from bovine abortion to human miscarriage. Clin Infect Dis 52:1469–1471 [View Article][PubMed]
    [Google Scholar]
  5. Casson N., Greub G. ( 2006). Resistance of different Chlamydia-like organisms to quinolones and mutations in the quinoline resistance-determining region of the DNA gyrase A- and topoisomerase-encoding genes. Int J Antimicrob Agents 27:541–544 [View Article][PubMed]
    [Google Scholar]
  6. Chen J. C., Stephens R. S. ( 1997). Chlamydia trachomatis glycosaminoglycan-dependent and independent attachment to eukaryotic cells. Microb Pathog 22:23–30 [View Article][PubMed]
    [Google Scholar]
  7. Christian J. G., Heymann J., Paschen S. A., Vier J., Schauenburg L., Rupp J., Meyer T. F., Häcker G., Heuer D. ( 2011). Targeting of a chlamydial protease impedes intracellular bacterial growth. PLoS Pathog 7:e1002283 [View Article][PubMed]
    [Google Scholar]
  8. Corsaro D., Venditti D., Valassina M. ( 2002). New parachlamydial 16S rDNA phylotypes detected in human clinical samples. Res Microbiol 153:563–567 [View Article][PubMed]
    [Google Scholar]
  9. Dudley R., Alsam S., Khan N. A. ( 2008). The role of proteases in the differentiation of Acanthamoeba castellanii . FEMS Microbiol Lett 286:9–15 [View Article][PubMed]
    [Google Scholar]
  10. Fukumoto T., Matsuo J., Hayashi M., Oguri S., Nakamura S., Mizutani Y., Yao T., Akizawa K., Suzuki H. et al. ( 2010). Impact of free-living amoebae on presence of Parachlamydia acanthamoebae in the hospital environment and its survival in vitro without requirement for amoebae. J Clin Microbiol 48:3360–3365 [View Article][PubMed]
    [Google Scholar]
  11. Greub G. ( 2009). Parachlamydia acanthamoebae, an emerging agent of pneumonia. Clin Microbiol Infect 15:18–28 [View Article][PubMed]
    [Google Scholar]
  12. Greub G., Boyadjiev I., La Scola B., Raoult D., Martin C. ( 2003). Serological hint suggesting that Parachlamydiaceae are agents of pneumonia in polytraumatized intensive care patients. Ann N Y Acad Sci 990:311–319 [View Article][PubMed]
    [Google Scholar]
  13. Hodinka R. L., Wyrick P. B. ( 1986). Ultrastructural study of mode of entry of Chlamydia psittaci into L-929 cells. Infect Immun 54:855–863[PubMed]
    [Google Scholar]
  14. Horn M. ( 2008). Chlamydiae as symbionts in eukaryotes. Annu Rev Microbiol 62:113–131 [View Article][PubMed]
    [Google Scholar]
  15. Horn M., Collingro A., Schmitz-Esser S., Beier C. L., Purkhold U., Fartmann B., Brandt P., Nyakatura G. J., Droege M. et al. ( 2004). Illuminating the evolutionary history of chlamydiae. Science 304:728–730 [View Article][PubMed]
    [Google Scholar]
  16. Jordan N. N., Lee S. E., Nowak G., Johns N. M., Gaydos J. C. ( 2011). Chlamydia trachomatis reported among U.S. active duty service members, 2000-2008. Mil Med 176:312–319[PubMed] [CrossRef]
    [Google Scholar]
  17. Jorgensen I., Bednar M. M., Amin V., Davis B. K., Ting J. P., McCafferty D. G., Valdivia R. H. ( 2011). The Chlamydia protease CPAF regulates host and bacterial proteins to maintain pathogen vacuole integrity and promote virulence. Cell Host Microbe 10:21–32 [View Article][PubMed]
    [Google Scholar]
  18. Khan N. A. ( 2006). Acanthamoeba: biology and increasing importance in human health. FEMS Microbiol Rev 30:564–595 [View Article][PubMed]
    [Google Scholar]
  19. Kim J. H., Jiang S., Elwell C. A., Engel J. N. ( 2011). Chlamydia trachomatis co-opts the FGF2 signaling pathway to enhance infection. PLoS Pathog 7:e1002285 [View Article][PubMed]
    [Google Scholar]
  20. Matsuo J., Hayashi Y., Nakamura S., Sato M., Mizutani Y., Asaka M., Yamaguchi H. ( 2008). Novel Parachlamydia acanthamoebae quantification method based on coculture with amoebae. Appl Environ Microbiol 74:6397–6404 [View Article][PubMed]
    [Google Scholar]
  21. Moon E. K., Chung D. I., Hong Y. C., Kong H. H. ( 2008). Characterization of a serine proteinase mediating encystation of Acanthamoeba . Eukaryot Cell 7:1513–1517 [View Article][PubMed]
    [Google Scholar]
  22. Nascimento-Carvalho C. M., Cardoso M. R., Paldanius M., Barral A., Araújo-Neto C. A., Saukkoriipi A., Vainionpää R., Leinonen M., Ruuskanen O. ( 2009). Simkania negevensis infection among Brazilian children hospitalized with community-acquired pneumonia. J Infect 58:250–253 [View Article][PubMed]
    [Google Scholar]
  23. Rasmussen-Lathrop S. J., Koshiyama K., Phillips N., Stephens R. S. ( 2000). Chlamydia-dependent biosynthesis of a heparan sulphate-like compound in eukaryotic cells. Cell Microbiol 2:137–144 [View Article][PubMed]
    [Google Scholar]
  24. Sutherland E. R., Martin R. J. ( 2007). Asthma and atypical bacterial infection. Chest 132:1962–1966 [View Article][PubMed]
    [Google Scholar]
  25. Taraktchoglou M., Pacey A. A., Turnbull J. E., Eley A. ( 2001). Infectivity of Chlamydia trachomatis serovar LGV but not E is dependent on host cell heparan sulfate. Infect Immun 69:968–976 [View Article][PubMed]
    [Google Scholar]
  26. Watson C., Alp N. J. ( 2008). Role of Chlamydia pneumoniae in atherosclerosis. Clin Sci (Lond) 114:509–531 [View Article][PubMed]
    [Google Scholar]
  27. Weiss E., Williams J. C., Dasch G. A., Kang Y. H. ( 1989). Energy metabolism of monocytic Ehrlichia . Proc Natl Acad Sci U S A 86:1674–1678 [View Article][PubMed]
    [Google Scholar]
  28. Wuppermann F. N., Hegemann J. H., Jantos C. A. ( 2001). Heparan sulfate-like glycosaminoglycan is a cellular receptor for Chlamydia pneumoniae . J Infect Dis 184:181–187 [View Article][PubMed]
    [Google Scholar]
  29. Zhang J. P., Stephens R. S. ( 1992). Mechanism of C. trachomatis attachment to eukaryotic host cells. Cell 69:861–869 [View Article][PubMed]
    [Google Scholar]
  30. Zhong G. ( 2011). Chlamydia trachomatis secretion of proteases for manipulating host signaling pathways. Front Microbiol 2:14[PubMed] [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.057190-0
Loading
/content/journal/micro/10.1099/mic.0.057190-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error