1887

Abstract

Bacterial gene regulation is controlled by complex regulatory cascades which integrate input environmental signals and adapt specific and adequate output cellular responses. These complex networks are far from being elucidated, in particular in . In the present study, we developed bacterial two-hybrid genome fragment libraries of the PAO1 strain to identify potential partners involved in the HptB/HsbR/HsbA pathway. This powerful tool, validated by the interaction previously described between HsbR and HsbA proteins, allowed us to demonstrate that the HsbR response regulator dimerizes through its PP2C/ATPase C-terminal effector domain, an observation further confirmed by pull-down experiments. This will also allow us to identify further new partners in this cascade.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.057059-0
2012-08-01
2020-01-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/8/1964.html?itemId=/content/journal/micro/10.1099/mic.0.057059-0&mimeType=html&fmt=ahah

References

  1. Bordi C., de Bentzmann S.. ( 2011;). Hacking into bacterial biofilms: a new therapeutic challenge. Ann Intensive Care1:19 [CrossRef][PubMed]
    [Google Scholar]
  2. Bordi C., Lamy M. C., Ventre I., Termine E., Hachani A., Fillet S., Roche B., Bleves S., Méjean V.. & other authors ( 2010;). Regulatory RNAs and the HptB/RetS signalling pathways fine-tune Pseudomonas aeruginosa pathogenesis. Mol Microbiol76:1427–1443 [CrossRef][PubMed]
    [Google Scholar]
  3. Brencic A., McFarland K. A., McManus H. R., Castang S., Mogno I., Dove S. L., Lory S.. ( 2009;). The GacS/GacA signal transduction system of Pseudomonas aeruginosa acts exclusively through its control over the transcription of the RsmY and RsmZ regulatory small RNAs. Mol Microbiol73:434–445 [CrossRef][PubMed]
    [Google Scholar]
  4. Burrowes E., Baysse C., Adams C., O’Gara F.. ( 2006;). Influence of the regulatory protein RsmA on cellular functions in Pseudomonas aeruginosa PAO1, as revealed by transcriptome analysis. Microbiology152:405–418 [CrossRef][PubMed]
    [Google Scholar]
  5. Clarke L., Carbon J.. ( 1976;). A colony bank containing synthetic Col El hybrid plasmids representative of the entire E. coli genome. Cell9:91–99 [CrossRef][PubMed]
    [Google Scholar]
  6. De N., Navarro M. V., Raghavan R. V., Sondermann H.. ( 2009;). Determinants for the activation and autoinhibition of the diguanylate cyclase response regulator WspR. J Mol Biol393:619–633 [CrossRef][PubMed]
    [Google Scholar]
  7. Delumeau O., Dutta S., Brigulla M., Kuhnke G., Hardwick S. W., Völker U., Yudkin M. D., Lewis R. J.. ( 2004;). Functional and structural characterization of RsbU, a stress signaling protein phosphatase 2C. J Biol Chem279:40927–40937 [CrossRef][PubMed]
    [Google Scholar]
  8. Domain F., Bina X. R., Levy S. B.. ( 2007;). Transketolase A, an enzyme in central metabolism, derepresses the marRAB multiple antibiotic resistance operon of Escherichia coli by interaction with MarR. Mol Microbiol66:383–394 [CrossRef][PubMed]
    [Google Scholar]
  9. Fields S., Song O.. ( 1989;). A novel genetic system to detect protein–protein interactions. Nature340:245–246 [CrossRef][PubMed]
    [Google Scholar]
  10. Gao R., Stock A. M.. ( 2010;). Molecular strategies for phosphorylation-mediated regulation of response regulator activity. Curr Opin Microbiol13:160–167 [CrossRef][PubMed]
    [Google Scholar]
  11. Goodman A. L., Kulasekara B., Rietsch A., Boyd D., Smith R. S., Lory S.. ( 2004;). A signaling network reciprocally regulates genes associated with acute infection and chronic persistence in Pseudomonas aeruginosa. Dev Cell7:745–754 [CrossRef][PubMed]
    [Google Scholar]
  12. Handford J. I., Ize B., Buchanan G., Butland G. P., Greenblatt J., Emili A., Palmer T.. ( 2009;). Conserved network of proteins essential for bacterial viability. J Bacteriol191:4732–4749 [CrossRef][PubMed]
    [Google Scholar]
  13. Heurlier K., Williams F., Heeb S., Dormond C., Pessi G., Singer D., Cámara M., Williams P., Haas D.. ( 2004;). Positive control of swarming, rhamnolipid synthesis, and lipase production by the posttranscriptional RsmA/RsmZ system in Pseudomonas aeruginosa PAO1. J Bacteriol186:2936–2945 [CrossRef][PubMed]
    [Google Scholar]
  14. Hsu J. L., Chen H. C., Peng H. L., Chang H. Y.. ( 2008;). Characterization of the histidine-containing phosphotransfer protein B-mediated multistep phosphorelay system in Pseudomonas aeruginosa PAO1. J Biol Chem283:9933–9944 [CrossRef][PubMed]
    [Google Scholar]
  15. Karimova G., Pidoux J., Ullmann A., Ladant D.. ( 1998;). A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc Natl Acad Sci U S A95:5752–5756 [CrossRef][PubMed]
    [Google Scholar]
  16. Karimova G., Ullmann A., Ladant D.. ( 2001;). Protein-protein interaction between Bacillus stearothermophilus tyrosyl-tRNA synthetase subdomains revealed by a bacterial two-hybrid system. J Mol Microbiol Biotechnol3:73–82[PubMed]
    [Google Scholar]
  17. Karna S. L., Zogaj X., Barker J. R., Seshu J., Dove S. L., Klose K. E.. ( 2010;). A bacterial two-hybrid system that utilizes Gateway cloning for rapid screening of protein-protein interactions. Biotechniques49:831–833 [CrossRef][PubMed]
    [Google Scholar]
  18. Kay E., Humair B., Dénervaud V., Riedel K., Spahr S., Eberl L., Valverde C., Haas D.. ( 2006;). Two GacA-dependent small RNAs modulate the quorum-sensing response in Pseudomonas aeruginosa. J Bacteriol188:6026–6033 [CrossRef][PubMed]
    [Google Scholar]
  19. Kleinschnitz E. M., Heichlinger A., Schirner K., Winkler J., Latus A., Maldener I., Wohlleben W., Muth G.. ( 2011;). Proteins encoded by the mre gene cluster in Streptomyces coelicolor A3(2) cooperate in spore wall synthesis. Mol Microbiol79:1367–1379 [CrossRef][PubMed]
    [Google Scholar]
  20. Klepp L. I., Soria M., Blanco F. C., Bianco M. V., Santangelo M. P., Cataldi A. A., Bigi F.. ( 2009;). Identification of two proteins that interact with the Erp virulence factor from Mycobacterium tuberculosis by using the bacterial two-hybrid system. BMC Mol Biol10:3 [CrossRef][PubMed]
    [Google Scholar]
  21. Pessi G., Williams F., Hindle Z., Heurlier K., Holden M. T., Cámara M., Haas D., Williams P.. ( 2001;). The global posttranscriptional regulator RsmA modulates production of virulence determinants and N-acylhomoserine lactones in Pseudomonas aeruginosa. J Bacteriol183:6676–6683 [CrossRef][PubMed]
    [Google Scholar]
  22. Rahme L. G., Ausubel F. M., Cao H., Drenkard E., Goumnerov B. C., Lau G. W., Mahajan-Miklos S., Plotnikova J., Tan M. W.. & other authors ( 2000;). Plants and animals share functionally common bacterial virulence factors. Proc Natl Acad Sci U S A97:8815–8821 [CrossRef][PubMed]
    [Google Scholar]
  23. Reimmann C., Beyeler M., Latifi A., Winteler H., Foglino M., Lazdunski A., Haas D.. ( 1997;). The global activator GacA of Pseudomonas aeruginosa PAO positively controls the production of the autoinducer N-butyryl-homoserine lactone and the formation of the virulence factors pyocyanin, cyanide, and lipase. Mol Microbiol24:309–319 [CrossRef][PubMed]
    [Google Scholar]
  24. Roucourt B., Lecoutere E., Chibeu A., Hertveldt K., Volckaert G., Lavigne R.. ( 2009;). A procedure for systematic identification of bacteriophage–host interactions of P. aeruginosa phages. Virology387:50–58 [CrossRef][PubMed]
    [Google Scholar]
  25. Thibodeau S. A., Fang R., Joung J. K.. ( 2004;). High-throughput beta-galactosidase assay for bacterial cell-based reporter systems. Biotechniques36:410–415[PubMed]
    [Google Scholar]
  26. Ventre I., Goodman A. L., Vallet-Gely I., Vasseur P., Soscia C., Molin S., Bleves S., Lazdunski A., Lory S., Filloux A.. ( 2006;). Multiple sensors control reciprocal expression of Pseudomonas aeruginosa regulatory RNA and virulence genes. Proc Natl Acad Sci U S A103:171–176 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.057059-0
Loading
/content/journal/micro/10.1099/mic.0.057059-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error