1887

Abstract

is the leading cause of nosocomial infections and a major cause of community-acquired infections. Biofilm formation is a key virulence determinant in certain types of infection, especially those involving inserted medical devices. We found in a previous study that the calcium chelators sodium citrate and EGTA inhibit biofilm formation in certain strains of but actually augment biofilm formation in other strains. Even two closely related strains, Newman and 10833, exhibited strikingly different biofilm phenotypes in the presence of calcium chelators, in that biofilm formation was inhibited in Newman but augmented in 10833. We also found that the surface protein clumping factor B (ClfB) plays a role in this phenomenon. In this study, we confirm that ClfB is required for biofilm formation under calcium-depleted conditions. We investigated the post-translational regulation of ClfB-mediated biofilm formation and found evidence that both calcium and the protease aureolysin disrupt established ClfB-dependent biofilms. Finally, we investigated the genetic basis for the biofilm-negative phenotype in strain Newman versus the biofilm-positive phenotype in strain 10833 under calcium-depleted conditions and found that strain 10833 contains a deletion that results in a stop codon within the aureolysin gene (). When 10833 expressed Newman , surface-associated ClfB and the ability to form a biofilm in chelating conditions was lost. Thus, the positive effect of chelating agents on biofilm formation in certain strains can be explained by increased ClfB activity in the absence of calcium and the discrepancy in the response of strains 10833 and Newman can be explained by point mutations in . This study reveals a previously unknown, to our knowledge, role for ClfB in biofilm formation and underscores the potential for striking phenotypic variability resulting from minor differences in strain background.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.057018-0
2012-06-01
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/6/1504.html?itemId=/content/journal/micro/10.1099/mic.0.057018-0&mimeType=html&fmt=ahah

References

  1. Abraham N. M., Lamlertthon S., Fowler V. G. Jr, Jefferson K. K.. ( 2012;). Chelating agents exert distinct effects on biofilm formation in Staphylococcus aureus depending on strain background: role for Clumping factor B. . J Med Microbiol [Epub ahead of print]. [CrossRef][PubMed]
    [Google Scholar]
  2. Arnaud M., Chastanet A., Débarbouillé M.. ( 2004;). New vector for efficient allelic replacement in naturally nontransformable, low-GC-content, gram-positive bacteria. . Appl Environ Microbiol 70:, 6887–6891. [CrossRef][PubMed]
    [Google Scholar]
  3. Arrizubieta M. J., Toledo-Arana A., Amorena B., Penadés J. R., Lasa I.. ( 2004;). Calcium inhibits Bap-dependent multicellular behavior in Staphylococcus aureus. . J Bacteriol 186:, 7490–7498. [CrossRef][PubMed]
    [Google Scholar]
  4. Christensen G. D., Simpson W. A., Younger J. J., Baddour L. M., Barrett F. F., Melton D. M., Beachey E. H.. ( 1985;). Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. . J Clin Microbiol 22:, 996–1006.[PubMed]
    [Google Scholar]
  5. Cramton S. E., Gerke C., Schnell N. F., Nichols W. W., Götz F.. ( 1999;). The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation. . Infect Immun 67:, 5427–5433.[PubMed]
    [Google Scholar]
  6. Crnich C., Maki D.. ( 2005;). Infections caused by intravascular devices: epidemiology, pathogenesis, diagnosis, prevention, and treatment. . In APIC Text of Infection Control and Epidemiology, , 2nd edn.., vol 1, pp. 24.21–24.26. Washington, DC:: Association for Professionals in Infection Control and Epidemiology;.
    [Google Scholar]
  7. Entenza J. M., Foster T. J., Ní Eidhin D., Vaudaux P., Francioli P., Moreillon P.. ( 2000;). Contribution of clumping factor B to pathogenesis of experimental endocarditis due to Staphylococcus aureus. . Infect Immun 68:, 5443–5446. [CrossRef][PubMed]
    [Google Scholar]
  8. François P., Schrenzel J., Stoerman-Chopard C., Favre H., Herrmann M., Foster T. J., Lew D. P., Vaudaux P.. ( 2000;). Identification of plasma proteins adsorbed on hemodialysis tubing that promote Staphylococcus aureus adhesion. . J Lab Clin Med 135:, 32–42. [CrossRef][PubMed]
    [Google Scholar]
  9. Grundmeier M., Hussain M., Becker P., Heilmann C., Peters G., Sinha B.. ( 2004;). Truncation of fibronectin-binding proteins in Staphylococcus aureus strain Newman leads to deficient adherence and host cell invasion due to loss of the cell wall anchor function. . Infect Immun 72:, 7155–7163. [CrossRef][PubMed]
    [Google Scholar]
  10. Hussain M., Herrmann M., von Eiff C., Perdreau-Remington F., Peters G.. ( 1997;). A 140-kilodalton extracellular protein is essential for the accumulation of Staphylococcus epidermidis strains on surfaces. . Infect Immun 65:, 519–524.[PubMed]
    [Google Scholar]
  11. Kasatiya S. S., Baldwin J. N.. ( 1967;). Nature of the determinant of tetracycline resistance in Staphylococcus aureus. . Can J Microbiol 13:, 1079–1086. [CrossRef][PubMed]
    [Google Scholar]
  12. Kennedy A. D., Otto M., Braughton K. R., Whitney A. R., Chen L., Mathema B., Mediavilla J. R., Byrne K. A., Parkins L. D. et al. ( 2008;). Epidemic community-associated methicillin-resistant Staphylococcus aureus: recent clonal expansion and diversification. . Proc Natl Acad Sci U S A 105:, 1327–1332. [CrossRef][PubMed]
    [Google Scholar]
  13. Kreiswirth B. N., Löfdahl S., Betley M. J., O’Reilly M., Schlievert P. M., Bergdoll M. S., Novick R. P.. ( 1983;). The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage. . Nature 305:, 709–712. [CrossRef][PubMed]
    [Google Scholar]
  14. Lee J. C.. ( 1993;). Electrotransformation of Staphylococci. Totowa, NJ:: Humana Press;.
    [Google Scholar]
  15. Luong T. T., Lee C. Y.. ( 2006;). The arl locus positively regulates Staphylococcus aureus type 5 capsule via an mgrA-dependent pathway. . Microbiology 152:, 3123–3131. [CrossRef][PubMed]
    [Google Scholar]
  16. Maki D. G., Kluger D. M., Crnich C. J.. ( 2006;). The risk of bloodstream infection in adults with different intravascular devices: a systematic review of 200 published prospective studies. . Mayo Clin Proc 81:, 1159–1171. [CrossRef][PubMed]
    [Google Scholar]
  17. McAleese F. M., Walsh E. J., Sieprawska M., Potempa J., Foster T. J.. ( 2001;). Loss of clumping factor B fibrinogen binding activity by Staphylococcus aureus involves cessation of transcription, shedding and cleavage by metalloprotease. . J Biol Chem 276:, 29969–29978. [CrossRef][PubMed]
    [Google Scholar]
  18. McDevitt D., François P., Vaudaux P., Foster T. J.. ( 1994;). Molecular characterization of the clumping factor (fibrinogen receptor) of Staphylococcus aureus. . Mol Microbiol 11:, 237–248. [CrossRef][PubMed]
    [Google Scholar]
  19. Miajlovic H., Loughman A., Brennan M., Cox D., Foster T. J.. ( 2007;). Both complement- and fibrinogen-dependent mechanisms contribute to platelet aggregation mediated by Staphylococcus aureus clumping factor B. . Infect Immun 75:, 3335–3343. [CrossRef][PubMed]
    [Google Scholar]
  20. Michiels J., Xi C., Verhaert J., Vanderleyden J.. ( 2002;). The functions of Ca2+ in bacteria: a role for EF-Hand proteins?. Trends Microbiol 10:, 87–93. [CrossRef][PubMed]
    [Google Scholar]
  21. Ní Eidhin D., Perkins S., François P., Vaudaux P., Höök M., Foster T. J.. ( 1998;). Clumping factor B (ClfB), a new surface-located fibrinogen-binding adhesin of Staphylococcus aureus. . Mol Microbiol 30:, 245–257. [CrossRef][PubMed]
    [Google Scholar]
  22. O’Brien L. M., Walsh E. J., Massey R. C., Peacock S. J., Foster T. J.. ( 2002;). Staphylococcus aureus clumping factor B (ClfB) promotes adherence to human type I cytokeratin 10: implications for nasal colonization. . Cell Microbiol 4:, 759–770. [CrossRef][PubMed]
    [Google Scholar]
  23. O’Connell D. P., Nanavaty T., McDevitt D., Gurusiddappa S., Höök M., Foster T. J.. ( 1998;). The fibrinogen-binding MSCRAMM (clumping factor) of Staphylococcus aureus has a Ca2+-dependent inhibitory site. . J Biol Chem 273:, 6821–6829. [CrossRef][PubMed]
    [Google Scholar]
  24. O’Grady N. P., Alexander M., Burns L. A., Dellinger E. P., Garland J., Heard S. O., Lipsett P. A., Masur H., Mermel L. A. et al. ( 2011;). Guidelines for the prevention of intravascular catheter-related infections. . Am J Infect Control 39: (Suppl. 1), S1–S34. [CrossRef][PubMed]
    [Google Scholar]
  25. Perkins S., Walsh E. J., Deivanayagam C. C., Narayana S. V., Foster T. J., Höök M.. ( 2001;). Structural organization of the fibrinogen-binding region of the clumping factor B MSCRAMM of Staphylococcus aureus. . J Biol Chem 276:, 44721–44728. [CrossRef][PubMed]
    [Google Scholar]
  26. Ramos E. R., Reitzel R., Jiang Y., Hachem R. Y., Chaftari A. M., Chemaly R. F., Hackett B., Pravinkumar S. E., Nates J. et al. ( 2011;). Clinical effectiveness and risk of emerging resistance associated with prolonged use of antibiotic-impregnated catheters: more than 0.5 million catheter days and 7 years of clinical experience. . Crit Care Med 39:, 245–251. [CrossRef][PubMed]
    [Google Scholar]
  27. Schneewind O., Mihaylova-Petkov D., Model P.. ( 1993;). Cell wall sorting signals in surface proteins of gram-positive bacteria. . EMBO J 12:, 4803–4811.[PubMed]
    [Google Scholar]
  28. Vaudaux P. E., François P., Proctor R. A., McDevitt D., Foster T. J., Albrecht R. M., Lew D. P., Wabers H., Cooper S. L.. ( 1995;). Use of adhesion-defective mutants of Staphylococcus aureus to define the role of specific plasma proteins in promoting bacterial adhesion to canine arteriovenous shunts. . Infect Immun 63:, 585–590.[PubMed]
    [Google Scholar]
  29. Walz J. M., Memtsoudis S. G., Heard S. O.. ( 2010;). Prevention of central venous catheter bloodstream infections. . J Intensive Care Med 25:, 131–138. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.057018-0
Loading
/content/journal/micro/10.1099/mic.0.057018-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error