1887

Abstract

, the causative agent of anthrax, is exposed to host-mediated antibacterial activities, such as reactive oxygen species (ROS), during the early stages of its disease process. The ability to resist these host-mediated stresses is an essential characteristic of a successful pathogen while it is generally assumed that non-pathogenic environmental bacteria succumb to these antimicrobial activities. In order to gain insights into the underlying mechanisms that pathogens use to resist host-mediated oxidative stress, we have compared the oxidative stress responses of and , a well-studied environmental bacterium. Among the four putative catalases encoded by we identified KatB as the main vegetative catalase. Comparative analysis of catalase production in and in response to superoxide and peroxide stress reveals different expression profiles, even though both are regulated by the PerR repressor, which senses and responds to peroxide stress. A deletion mutant exhibits enhanced KatB activity and is hyper-resistant to peroxide stress. Superoxide dismutase A1 (SodA1) is the main contributor to the intracellular superoxide dismutase activity in vegetative cells and the gene encoding this enzyme is constitutively expressed. Although aspects of the ROS detoxifying systems of and are similar, their responses to superoxide stress are different. The observed differences are likely to reflect adaptations to specific environmental niches.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.057000-0
2012-03-01
2020-04-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/3/636.html?itemId=/content/journal/micro/10.1099/mic.0.057000-0&mimeType=html&fmt=ahah

References

  1. Anagnostopoulos C., Spizizen J.. ( 1961;). Requirement for transformation in Bacillus subtilis . J Bacteriol81:741–746[PubMed]
    [Google Scholar]
  2. Baillie L., Hibbs S., Tsai P., Cao G. L., Rosen G. M.. ( 2005;). Role of superoxide in the germination of Bacillus anthracis endospores. FEMS Microbiol Lett245:33–38 [CrossRef][PubMed]
    [Google Scholar]
  3. Bendtsen J. D., Nielsen H., von Heijne G., Brunak S.. ( 2004;). Improved prediction of signal peptides: SignalP 3.0. J Mol Biol340:783–795 [CrossRef][PubMed]
    [Google Scholar]
  4. Beyer W., Imlay J., Fridovich I.. ( 1991;). Superoxide dismutases. Prog Nucleic Acid Res Mol Biol40:221–253 [CrossRef][PubMed]
    [Google Scholar]
  5. Bol D. K., Yasbin R. E.. ( 1991;). The isolation, cloning and identification of a vegetative catalase gene from Bacillus subtilis . Gene109:31–37 [CrossRef][PubMed]
    [Google Scholar]
  6. Bourgogne A., Drysdale M., Hilsenbeck S. G., Peterson S. N., Koehler T. M.. ( 2003;). Global effects of virulence gene regulators in a Bacillus anthracis strain with both virulence plasmids. Infect Immun71:2736–2743 [CrossRef][PubMed]
    [Google Scholar]
  7. Bsat N., Herbig A., Casillas-Martinez L., Setlow P., Helmann J. D.. ( 1998;). Bacillus subtilis contains multiple Fur homologues: identification of the iron uptake (Fur) and peroxide regulon (PerR) repressors. Mol Microbiol29:189–198 [CrossRef][PubMed]
    [Google Scholar]
  8. Carlson P. E. Jr, Carr K. A., Janes B. K., Anderson E. C., Hanna P. C.. ( 2009;). Transcriptional profiling of Bacillus anthracis Sterne (34F2) during iron starvation. PLoS ONE4:e6988 [CrossRef][PubMed]
    [Google Scholar]
  9. Chen L., Helmann J. D.. ( 1995;). Bacillus subtilis MrgA is a Dps(PexB) homologue: evidence for metalloregulation of an oxidative-stress gene. Mol Microbiol18:295–300 [CrossRef][PubMed]
    [Google Scholar]
  10. Chen Y., Tenover F. C., Koehler T. M.. ( 2004;). β-Lactamase gene expression in a penicillin-resistant Bacillus anthracis strain. Antimicrob Agents Chemother48:4873–4877 [CrossRef][PubMed]
    [Google Scholar]
  11. Cybulski R. J. Jr, Sanz P., Alem F., Stibitz S., Bull R. L., O’Brien A. D.. ( 2009;). Four superoxide dismutases contribute to Bacillus anthracis virulence and provide spores with redundant protection from oxidative stress. Infect Immun77:274–285 [CrossRef][PubMed]
    [Google Scholar]
  12. Edwards K. M., Cynamon M. H., Voladri R. K., Hager C. C., DeStefano M. S., Tham K. T., Lakey D. L., Bochan M. R., Kernodle D. S.. ( 2001;). Iron-cofactored superoxide dismutase inhibits host responses to Mycobacterium tuberculosis . Am J Respir Crit Care Med164:2213–2219[PubMed][CrossRef]
    [Google Scholar]
  13. Engelmann S., Hecker M.. ( 1996;). Impaired oxidative stress resistance of Bacillus subtilis sigB mutants and the role of katA and katE . FEMS Microbiol Lett145:63–69 [CrossRef][PubMed]
    [Google Scholar]
  14. Eymann C., Homuth G., Scharf C., Hecker M.. ( 2002;). Bacillus subtilis functional genomics: global characterization of the stringent response by proteome and transcriptome analysis. J Bacteriol184:2500–2520 [CrossRef][PubMed]
    [Google Scholar]
  15. Fang F. C., DeGroote M. A., Foster J. W., Bäumler A. J., Ochsner U., Testerman T., Bearson S., Giárd J. C., Xu Y.. & other authors ( 1999;). Virulent Salmonella typhimurium has two periplasmic Cu, Zn-superoxide dismutases. Proc Natl Acad Sci U S A967:502–507 [CrossRef][PubMed]
    [Google Scholar]
  16. Fuangthong M., Helmann J. D.. ( 2003;). Recognition of DNA by three ferric uptake regulator (Fur) homologs in Bacillus subtilis . J Bacteriol185:6348–6357 [CrossRef][PubMed]
    [Google Scholar]
  17. Fuangthong M., Herbig A. F., Bsat N., Helmann J. D.. ( 2002;). Regulation of the Bacillus subtilis fur and perR genes by PerR: not all members of the PerR regulon are peroxide inducible. J Bacteriol184:3276–3286 [CrossRef][PubMed]
    [Google Scholar]
  18. Gat O., Zaide G., Inbar I., Grosfeld H., Chitlaru T., Levy H., Shafferman A.. ( 2008;). Characterization of Bacillus anthracis iron-regulated surface determinant (Isd) proteins containing NEAT domains. Mol Microbiol70:983–999[PubMed]
    [Google Scholar]
  19. Haikarainen T., Papageorgiou A. C.. ( 2010;). Dps-like proteins: structural and functional insights into a versatile protein family. Cell Mol Life Sci67:341–351 [CrossRef][PubMed]
    [Google Scholar]
  20. Halliwell B., Gutteridge J. M. C.. ( 2007;). Free Radicals in Biology and Medicine, 4th edn. Oxford: Oxford University Press;
    [Google Scholar]
  21. Hanna P. C., Kruskal B. A., Ezekowitz R. A. B., Bloom B. R., Collier R. J.. ( 1994;). Role of macrophage oxidative burst in the action of anthrax lethal toxin. Mol Med1:7–18[PubMed]
    [Google Scholar]
  22. Hassan H. M., Fridovich I.. ( 1979;). Paraquat and Escherichia coli. Mechanism of production of extracellular superoxide radical. J Biol Chem254:10846–10852[PubMed]
    [Google Scholar]
  23. Helmann J. D., Moran C. P. Jr. ( 2002;). RNA polymerase and sigma factors. Bacillus subtilis and its Closest Relatives: from Genes to Cells289–312 Sonenshein A. L., Hoch J. A., Losick R.. Washington, DC: American Society for Microbiology;[CrossRef]
    [Google Scholar]
  24. Henriques A. O., Melsen L. R., Moran C. P. Jr. ( 1998;). Involvement of superoxide dismutase in spore coat assembly in Bacillus subtilis . J Bacteriol180:2285–2291[PubMed]
    [Google Scholar]
  25. Herbig A. F., Helmann J. D.. ( 2001;). Roles of metal ions and hydrogen peroxide in modulating the interaction of the Bacillus subtilis PerR peroxide regulon repressor with operator DNA. Mol Microbiol41:849–859 [CrossRef][PubMed]
    [Google Scholar]
  26. Hoffmaster A. R., Koehler T. M.. ( 1997;). The anthrax toxin activator gene atxA is associated with CO2-enhanced non-toxin gene expression in Bacillus anthracis . Infect Immun65:3091–3099[PubMed]
    [Google Scholar]
  27. Horsburgh M. J., Ingham E., Foster S. J.. ( 2001;). In Staphylococcus aureus, Fur is an interactive regulator with PerR, contributes to virulence, and is necessary for oxidative stress resistance through positive regulation of catalase and iron homeostasis. J Bacteriol183:468–475 [CrossRef][PubMed]
    [Google Scholar]
  28. Imlay J. A.. ( 2008;). Cellular defenses against superoxide and hydrogen peroxide. Annu Rev Biochem77:755–776 [CrossRef][PubMed]
    [Google Scholar]
  29. Inaoka T., Matsumura Y., Tsuchido T.. ( 1999;). SodA and manganese are essential for resistance to oxidative stress in growing and sporulating cells of Bacillus subtilis . J Bacteriol181:1939–1943[PubMed]
    [Google Scholar]
  30. Jang S., Imlay J. A.. ( 2007;). Micromolar intracellular hydrogen peroxide disrupts metabolism by damaging iron-sulfur enzymes. J Biol Chem282:929–937 [CrossRef][PubMed]
    [Google Scholar]
  31. Kanafani H., Martin S. E.. ( 1985;). Catalase and superoxide dismutase activities in virulent and nonvirulent Staphylococcus aureus isolates. J Clin Microbiol21:607–610[PubMed]
    [Google Scholar]
  32. Keyer K., Imlay J. A.. ( 1996;). Superoxide accelerates DNA damage by elevating free-iron levels. Proc Natl Acad Sci U S A93:13635–13640 [CrossRef][PubMed]
    [Google Scholar]
  33. Liu H., Bergman N. H., Thomason B., Shallom S., Hazen A., Crossno J., Rasko D. A., Ravel J., Read T. D.. & other authors ( 2004;). Formation and composition of the Bacillus anthracis endospore. J Bacteriol186:164–178 [CrossRef][PubMed]
    [Google Scholar]
  34. Messner K. R., Imlay J. A.. ( 1999;). The identification of primary sites of superoxide and hydrogen peroxide formation in the aerobic respiratory chain and sulfite reductase complex of Escherichia coli . J Biol Chem274:10119–10128 [CrossRef][PubMed]
    [Google Scholar]
  35. Mongkolsuk S., Helmann J. D.. ( 2002;). Regulation of inducible peroxide stress responses. Mol Microbiol45:9–15 [CrossRef][PubMed]
    [Google Scholar]
  36. Mostertz J., Scharf C., Hecker M., Homuth G.. ( 2004;). Transcriptome and proteome analysis of Bacillus subtilis gene expression in response to superoxide and peroxide stress. Microbiology150:497–512 [CrossRef][PubMed]
    [Google Scholar]
  37. Nunoshiba T., Obata F., Boss A. C., Oikawa S., Mori T., Kawanishi S., Yamamoto K.. ( 1999;). Role of iron and superoxide for generation of hydroxyl radical, oxidative DNA lesions, and mutagenesis in Escherichia coli . J Biol Chem274:34832–34837 [CrossRef][PubMed]
    [Google Scholar]
  38. Olsson U., Billberg A., Sjövall S., Al-Karadaghi S., Hansson M.. ( 2002;). In vivo and in vitro studies of Bacillus subtilis ferrochelatase mutants suggest substrate channeling in the heme biosynthesis pathway. J Bacteriol184:4018–4024 [CrossRef][PubMed]
    [Google Scholar]
  39. Passalacqua K. D., Bergman N. H., Herring-Palmer A., Hanna P.. ( 2006;). The superoxide dismutases of Bacillus anthracis do not cooperatively protect against endogenous superoxide stress. J Bacteriol188:3837–3848 [CrossRef][PubMed]
    [Google Scholar]
  40. Passalacqua K. D., Bergman N. H., Lee J. Y., Sherman D. H., Hanna P. C.. ( 2007;). The global transcriptional responses of Bacillus anthracis Sterne (34F2) and a ΔsodA1 mutant to paraquat reveal metal ion homeostasis imbalances during endogenous superoxide stress. J Bacteriol189:3996–4013 [CrossRef][PubMed]
    [Google Scholar]
  41. Pohl S., Tu W. Y., Aldridge P. D., Gillespie C., Hahne H., Mäder U., Read T. D., Harwood C. R., Harwood C. R.. ( 2011;). Combined proteomic and transcriptomic analysis of the response of Bacillus anthracis to oxidative stress. Proteomics11:3036–3055 [CrossRef][PubMed]
    [Google Scholar]
  42. Raupach B., Kaufmann S. H.. ( 2001;). Immune responses to intracellular bacteria. Curr Opin Immunol13:417–428 [CrossRef][PubMed]
    [Google Scholar]
  43. Read T. D., Peterson S. N., Tourasse N., Baillie L. W., Paulsen I. T., Nelson K. E., Tettelin H., Fouts D. E., Eisen J. A.. & other authors ( 2003;). The genome sequence of Bacillus anthracis Ames and comparison to closely related bacteria. Nature423:81–86 [CrossRef][PubMed]
    [Google Scholar]
  44. Saile E., Koehler T. M.. ( 2002;). Control of anthrax toxin gene expression by the transition state regulator abrB . J Bacteriol184:370–380 [CrossRef][PubMed]
    [Google Scholar]
  45. Seaver L. C., Imlay J. A.. ( 2001;). Alkyl hydroperoxide reductase is the primary scavenger of endogenous hydrogen peroxide in Escherichia coli . J Bacteriol183:7173–7181 [CrossRef][PubMed]
    [Google Scholar]
  46. Storz G., Imlay J. A.. ( 1999;). Oxidative stress. Curr Opin Microbiol2:188–194 [CrossRef][PubMed]
    [Google Scholar]
  47. Taketani S.. ( 1993;). Molecular and genetic characterization of ferrochelatase. Tohoku J Exp Med171:1–20 [CrossRef][PubMed]
    [Google Scholar]
  48. Tu W. Y., Pohl S., Gizynski K., Harwood C. R.. ( 2012a;). The iron binding protein Dps2 confers peroxide stress resistance on Bacillus anthracis . J Bacteriol194:925–931 [CrossRef][PubMed]
    [Google Scholar]
  49. Tu W. Y., Pohl S., Gray J., Robinson N. J., Harwood C. R., Waldron K. J.. ( 2012b;). Cellular iron distribution in Bacillus anthracis . J Bacteriol194:932–940 [CrossRef][PubMed]
    [Google Scholar]
  50. van Vliet A. H. M., Baillon M. L., Penn C. W., Ketley J. M.. ( 1999;). Campylobacter jejuni contains two Fur homologs: characterization of iron-responsive regulation of peroxide stress defense genes by the PerR repressor. J Bacteriol181:6371–6376[PubMed]
    [Google Scholar]
  51. Zuber P.. ( 2009;). Management of oxidative stress in Bacillus . Annu Rev Microbiol63:575–597 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.057000-0
Loading
/content/journal/micro/10.1099/mic.0.057000-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error