1887

Abstract

The Rcs phosphorelay signal transduction system controls genes for capsule production and many other envelope-related functions and is implicated in biofilm formation. We investigated the activation of the Rcs system in a null mutant of , which completely lacks the major acidic phospholipids phosphatidylglycerol and cardiolipin. We found that the Rcs activation, and consequent thermosensitivity, were suppressed by overexpression of the gene, encoding diacylglyceryltransferase, which catalyses the modification of prolipoproteins that is the first step in the maturation and localization process of lipoproteins, and is a prerequisite for the later steps. The outer-membrane lipoprotein RcsF is an essential component of Rcs signalling. This lipoprotein was poorly localized to the outer membrane in the null mutant, probably because of the absence of phosphatidylglycerol, the major donor of diacylglycerol in the Lgt reaction. Even in a background, the Rcs system was activated when RcsF was mislocalized to the inner membrane by alteration of the residues at positions 2 and 3 of its mature form to inner-membrane retention signals, or when it was mislocalized to the periplasm by fusing the mature form to maltose-binding protein. These results suggest that RcsF functions as a ligand for RcsC in activating Rcs signalling. Mislocalized versions of RcsF still responded to mutations , and , further activating the Rcs system, although the mutation barely caused activation. It seems that RcsF must be localized in the outer membrane to respond effectively to stimuli from outside the cell.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.056945-0
2012-05-01
2020-01-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/5/1238.html?itemId=/content/journal/micro/10.1099/mic.0.056945-0&mimeType=html&fmt=ahah

References

  1. Boeke J. D., Model P.. ( 1982;). A prokaryotic membrane anchor sequence: carboxyl terminus of bacteriophage f1 gene III protein retains it in the membrane. Proc Natl Acad Sci U S A79:5200–5204 [CrossRef][PubMed]
    [Google Scholar]
  2. Brill J. A., Quinlan-Walshe C., Gottesman S.. ( 1988;). Fine-structure mapping and identification of two regulators of capsule synthesis in Escherichia coli K-12. J Bacteriol170:2599–2611[PubMed]
    [Google Scholar]
  3. Castanié-Cornet M. P., Cam K., Jacq A.. ( 2006;). RcsF is an outer membrane lipoprotein involved in the RcsCDB phosphorelay signaling pathway in Escherichia coli. J Bacteriol188:4264–4270 [CrossRef][PubMed]
    [Google Scholar]
  4. Chang A. C., Cohen S. N.. ( 1978;). Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J Bacteriol134:1141–1156[PubMed]
    [Google Scholar]
  5. Chumley F. G., Menzel R., Roth J. R.. ( 1979;). Hfr formation directed by Tn10. Genetics91:639–655[PubMed]
    [Google Scholar]
  6. Churchward G., Belin D., Nagamine Y.. ( 1984;). A pSC101-derived plasmid which shows no sequence homology to other commonly used cloning vectors. Gene31:165–171 [CrossRef][PubMed]
    [Google Scholar]
  7. Domínguez-Bernal G., Pucciarelli M. G., Ramos-Morales F., García-Quintanilla M., Cano D. A., Casadesús J., García-del Portillo F.. ( 2004;). Repression of the RcsC-YojN-RcsB phosphorelay by the IgaA protein is a requisite for Salmonella virulence. Mol Microbiol53:1437–1449 [CrossRef][PubMed]
    [Google Scholar]
  8. Ebel W., Vaughn G. J., Peters H. K. III, Trempy J. E.. ( 1997;). Inactivation of mdoH leads to increased expression of colanic acid capsular polysaccharide in Escherichia coli. J Bacteriol179:6858–6861[PubMed]
    [Google Scholar]
  9. Farris C., Sanowar S., Bader M. W., Pfuetzner R., Miller S. I.. ( 2010;). Antimicrobial peptides activate the Rcs regulon through the outer membrane lipoprotein RcsF. J Bacteriol192:4894–4903 [CrossRef][PubMed]
    [Google Scholar]
  10. Ferrières L., Clarke D. J.. ( 2003;). The RcsC sensor kinase is required for normal biofilm formation in Escherichia coli K-12 and controls the expression of a regulon in response to growth on a solid surface. Mol Microbiol50:1665–1682 [CrossRef][PubMed]
    [Google Scholar]
  11. Gervais F. G., Drapeau G. R.. ( 1992;). Identification, cloning, and characterization of rcsF, a new regulator gene for exopolysaccharide synthesis that suppresses the division mutation ftsZ84 in Escherichia coli K-12. J Bacteriol174:8016–8022[PubMed]
    [Google Scholar]
  12. Hagiwara D., Sugiura M., Oshima T., Mori H., Aiba H., Yamashino T., Mizuno T.. ( 2003;). Genome-wide analyses revealing a signaling network of the RcsC-YojN-RcsB phosphorelay system in Escherichia coli. J Bacteriol185:5735–5746 [CrossRef][PubMed]
    [Google Scholar]
  13. Huang Y.-H., Ferrières L., Clarke D. J.. ( 2006;). The role of the Rcs phosphorelay in Enterobacteriaceae. Res Microbiol157:206–212 [CrossRef][PubMed]
    [Google Scholar]
  14. Hussain M., Ichihara S., Mizushima S.. ( 1980;). Accumulation of glyceride-containing precursor of the outer membrane lipoprotein in the cytoplasmic membrane of Escherichia coli treated with globomycin. J Biol Chem255:3707–3712[PubMed]
    [Google Scholar]
  15. Kikuchi S., Shibuya I., Matsumoto K.. ( 2000;). Viability of an Escherichia coli pgsA null mutant lacking detectable phosphatidylglycerol and cardiolipin. J Bacteriol182:371–376 [CrossRef][PubMed]
    [Google Scholar]
  16. Kleckner N., Bender J., Gottesman S.. ( 1991;). Uses of transposons with emphasis on Tn10. Methods Enzymol204:139–180 [CrossRef][PubMed]
    [Google Scholar]
  17. Majdalani N., Gottesman S.. ( 2005;). The Rcs phosphorelay: a complex signal transduction system. Annu Rev Microbiol59:379–405 [CrossRef][PubMed]
    [Google Scholar]
  18. Majdalani N., Hernandez D., Gottesman S.. ( 2002;). Regulation and mode of action of the second small RNA activator of RpoS translation, RprA. Mol Microbiol46:813–826 [CrossRef][PubMed]
    [Google Scholar]
  19. Majdalani N., Heck M., Stout V., Gottesman S.. ( 2005;). Role of RcsF in signaling to the Rcs phosphorelay pathway in Escherichia coli. J Bacteriol187:6770–6778 [CrossRef][PubMed]
    [Google Scholar]
  20. Matsumoto K.. ( 2001;). Dispensable nature of phosphatidylglycerol in Escherichia coli: dual roles of anionic phospholipids. Mol Microbiol39:1427–1433 [CrossRef][PubMed]
    [Google Scholar]
  21. Miller J. H.. ( 1992;). A Short Course in Bacterial Genetics: a Laboratory Manual and Handbook for Escherichia coli and Related Bacteria Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  22. Mouslim C., Groisman E. A.. ( 2003;). Control of the Salmonella ugd gene by three two-component regulatory systems. Mol Microbiol47:335–344 [CrossRef][PubMed]
    [Google Scholar]
  23. Nagahama H., Sakamoto Y., Matsumoto K., Hara H.. ( 2006;). RcsA-dependent and -independent growth defects caused by the activated Rcs phosphorelay system in the Escherichia coli pgsA null mutant. J Gen Appl Microbiol52:91–98 [CrossRef][PubMed]
    [Google Scholar]
  24. Nagahama H., Oshima T., Mori H., Matsumoto K., Hara H.. ( 2007;). Hyperexpression of the osmB gene in an acidic phospholipid-deficient Escherichia coli mutant. J Gen Appl Microbiol53:143–151 [CrossRef][PubMed]
    [Google Scholar]
  25. Nikaido H.. ( 1996;). Outer membrane. Escherichia coli and Salmonella: Cellular and Molecular Biology 29–47 Neidhardt F. C., Curtis R. III, Ingraham J. L., Lin E. C. C., Low K. B., Magasanik B., Reznikoff W. S., Riley M., Schaechter M., Umbarger H. E.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  26. Okada M., Matsuzaki H., Shibuya I., Matsumoto K.. ( 1994;). Cloning, sequencing, and expression in Escherichia coli of the Bacillus subtilis gene for phosphatidylserine synthase. J Bacteriol176:7456–7461[PubMed]
    [Google Scholar]
  27. Parker C. T., Kloser A. W., Schnaitman C. A., Stein M. A., Gottesman S., Gibson B. W.. ( 1992;). Role of the rfaG and rfaP genes in determining the lipopolysaccharide core structure and cell surface properties of Escherichia coli K-12. J Bacteriol174:2525–2538[PubMed]
    [Google Scholar]
  28. Sambrook J., Russell D. W.. ( 2001;). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  29. Sankaran K., Wu H. C.. ( 1994;). Lipid modification of bacterial prolipoprotein. Transfer of diacylglyceryl moiety from phosphatidylglycerol. J Biol Chem269:19701–19706[PubMed]
    [Google Scholar]
  30. Shiba Y., Yokoyama Y., Aono Y., Kiuchi T., Kusaka J., Matsumoto K., Hara H.. ( 2004;). Activation of the Rcs signal transduction system is responsible for the thermosensitive growth defect of an Escherichia coli mutant lacking phosphatidylglycerol and cardiolipin. J Bacteriol186:6526–6535 [CrossRef][PubMed]
    [Google Scholar]
  31. Shiba Y., Matsumoto K., Hara H.. ( 2006;). DjlA negatively regulates the Rcs signal transduction system in Escherichia coli. Genes Genet Syst81:51–56 [CrossRef][PubMed]
    [Google Scholar]
  32. Stock A. M., Robinson V. L., Goudreau P. N.. ( 2000;). Two-component signal transduction. Annu Rev Biochem69:183–215 [CrossRef][PubMed]
    [Google Scholar]
  33. Stout V., Gottesman S.. ( 1990;). RcsB and RcsC: a two-component regulator of capsule synthesis in Escherichia coli. J Bacteriol172:659–669[PubMed]
    [Google Scholar]
  34. Studier F. W., Moffatt B. A.. ( 1986;). Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol189:113–130 [CrossRef][PubMed]
    [Google Scholar]
  35. Suzuki M., Hara H., Matsumoto K.. ( 2002;). Envelope disorder of Escherichia coli cells lacking phosphatidylglycerol. J Bacteriol184:5418–5425 [CrossRef][PubMed]
    [Google Scholar]
  36. Takeda S., Fujisawa Y., Matsubara M., Aiba H., Mizuno T.. ( 2001;). A novel feature of the multistep phosphorelay in Escherichia coli: a revised model of the RcsC→YojN→RcsB signalling pathway implicated in capsular synthesis and swarming behaviour. Mol Microbiol40:440–450 [CrossRef][PubMed]
    [Google Scholar]
  37. Tokuda H., Matsuyama S.. ( 2004;). Sorting of lipoproteins to the outer membrane in E. coli. Biochim Biophys Acta1693:5–13 [CrossRef][PubMed]
    [Google Scholar]
  38. Wang P.-Z., Doi R. H.. ( 1984;). Overlapping promoters transcribed by Bacillus subtilis σ55 and σ37 RNA polymerase holoenzymes during growth and stationary phases. J Biol Chem259:8619–8625[PubMed]
    [Google Scholar]
  39. Young K. K., Edlin G.. ( 1983;). Physical and genetical analysis of bacteriophage T4 generalized transduction. Mol Gen Genet192:241–246 [CrossRef][PubMed]
    [Google Scholar]
  40. Zhang W., Shi L.. ( 2005;). Distribution and evolution of multiple-step phosphorelay in prokaryotes: lateral domain recruitment involved in the formation of hybrid-type histidine kinases. Microbiology151:2159–2173 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.056945-0
Loading
/content/journal/micro/10.1099/mic.0.056945-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error