1887

Abstract

is a ubiquitous environmental bacterium responsible for a variety of infections in humans, as well as in animal hosts. While the evolution of virulence in strains isolated from chronic lung infection in cystic fibrosis (CF) patients has been extensively studied, the virulence phenotype of isolated from other infection types or from the environment is currently not well characterized. Here we report an extensive analysis of the virulence of strains isolated from acute infections compared with population structure. Virulence profiles of individual strains were also compared with the expression levels of the gene, the transcriptional regulator of the rhl quorum-sensing system, and the gene encoding Crc, a global regulator controlling catabolite repression and carbon metabolism. Additionally, the presence/absence of the two mutually exclusive genes, and , encoding effectors of the type III secretion system, was assessed. In order to capture the widest range of genetic variability, a collection of 120 clinical strains was initially characterized by repetitive element-based PCR genotyping, and a selection of 27 strains belonging to different clonal lineages was subsequently tested using three different virulence assays, including two assays on different growth media, and a fast-killing assay. We show that the parallel application of virulence assays can be used to quantitatively assess this complex, multifactorial phenotypic trait. We observed a wide spectrum of virulence phenotypes ranging from weakly to highly aggressive, indicating that clinical strains isolated from acute infections can present a reduced or altered virulence phenotype. Genotypic associations only partially correlated with virulence profiles and virulence gene expression, whereas the presence of either or was not significantly correlated with virulence. Interestingly, the expression of showed a significant and positive correlation with the virulence profiles obtained with the three assays, while the expression of was either negatively or not correlated with virulence, depending on the assay.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.056689-0
2012-08-01
2020-01-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/8/2089.html?itemId=/content/journal/micro/10.1099/mic.0.056689-0&mimeType=html&fmt=ahah

References

  1. Alibaud L., Köhler T., Coudray A., Prigent-Combaret C., Bergeret E., Perrin J., Benghezal M., Reimmann C., Gauthier Y.. & other authors ( 2008;). Pseudomonas aeruginosa virulence genes identified in a Dictyostelium host model. Cell Microbiol10:729–740 [CrossRef][PubMed]
    [Google Scholar]
  2. Bonifait L., Charette S. J., Filion G., Gottschalk M., Grenier D.. ( 2011;). Amoeba host model for evaluation of Streptococcus suis virulence. Appl Environ Microbiol77:6271–6273 [CrossRef][PubMed]
    [Google Scholar]
  3. Bradbury R. S., Roddam L. F., Merritt A., Reid D. W., Champion A. C.. ( 2010;). Virulence gene distribution in clinical, nosocomial and environmental isolates of Pseudomonas aeruginosa . J Med Microbiol59:881–890 [CrossRef][PubMed]
    [Google Scholar]
  4. Bradbury R. S., Reid D. W., Inglis T. J., Champion A. C.. ( 2011;). Decreased virulence of cystic fibrosis Pseudomonas aeruginosa in Dictyostelium discoideum . Microbiol Immunol55:224–230 [CrossRef][PubMed]
    [Google Scholar]
  5. Bragonzi A., Paroni M., Nonis A., Cramer N., Montanari S., Rejman J., Di Serio C., Döring G., Tümmler B.. ( 2009;). Pseudomonas aeruginosa microevolution during cystic fibrosis lung infection establishes clones with adapted virulence. Am J Respir Crit Care Med180:138–145 [CrossRef][PubMed]
    [Google Scholar]
  6. Cosson P., Zulianello L., Join-Lambert O., Faurisson F., Gebbie L., Benghezal M., Van Delden C., Curty L. K., Köhler T.. ( 2002;). Pseudomonas aeruginosa virulence analyzed in a Dictyostelium discoideum host system. J Bacteriol184:3027–3033 [CrossRef][PubMed]
    [Google Scholar]
  7. Engel J., Balachandran P.. ( 2009;). Role of Pseudomonas aeruginosa type III effectors in disease. Curr Opin Microbiol12:61–66 [CrossRef][PubMed]
    [Google Scholar]
  8. Feltman H., Schulert G., Khan S., Jain M., Peterson L., Hauser A. R.. ( 2001;). Prevalence of type III secretion genes in clinical and environmental isolates of Pseudomonas aeruginosa . Microbiology147:2659–2669[PubMed]
    [Google Scholar]
  9. Froquet R., Lelong E., Marchetti A., Cosson P.. ( 2009;). Dictyostelium discoideum: a model host to measure bacterial virulence. Nat Protoc4:25–30 [CrossRef][PubMed]
    [Google Scholar]
  10. Fumanelli L., Iannelli M., Janjua H. A., Jousson O.. ( 2011;). Mathematical modeling of bacterial virulence and host–pathogen interactions in the Dictyostelium/Pseudomonas system. J Theor Biol270:19–24 [CrossRef][PubMed]
    [Google Scholar]
  11. Hasselbring B. M., Patel M. K., Schell M. A.. ( 2011;). Dictyostelium discoideum as a model system for identification of Burkholderia pseudomallei virulence factors. Infect Immun79:2079–2088 [CrossRef][PubMed]
    [Google Scholar]
  12. Hogardt M., Heesemann J.. ( 2010;). Adaptation of Pseudomonas aeruginosa during persistence in the cystic fibrosis lung. Int J Med Microbiol300:557–562 [CrossRef][PubMed]
    [Google Scholar]
  13. Kesarwani M., Hazan R., He J., Que Y. A., Apidianakis Y., Lesic B., Xiao G., Dekimpe V., Milot S.. & other authors ( 2011;). A quorum sensing regulated small volatile molecule reduces acute virulence and promotes chronic infection phenotypes. PLoS Pathog7:e1002192 [CrossRef][PubMed]
    [Google Scholar]
  14. Lelong E., Marchetti A., Simon M., Burns J. L., van Delden C., Köhler T., Cosson P.. ( 2011;). Evolution of Pseudomonas aeruginosa virulence in infected patients revealed in a Dictyostelium discoideum host model. Clin Microbiol Infect17:1415–1420[PubMed][CrossRef]
    [Google Scholar]
  15. Linares J. F., Moreno R., Fajardo A., Martínez-Solano L., Escalante R., Rojo F., Martínez J. L.. ( 2010;). The global regulator Crc modulates metabolism, susceptibility to antibiotics and virulence in Pseudomonas aeruginosa . Environ Microbiol12:3196–3212 [CrossRef][PubMed]
    [Google Scholar]
  16. Llanes C., Hocquet D., Vogne C., Benali-Baitich D., Neuwirth C., Plésiat P.. ( 2004;). Clinical strains of Pseudomonas aeruginosa overproducing MexAB-OprM and MexXY efflux pumps simultaneously. Antimicrob Agents Chemother48:1797–1802 [CrossRef][PubMed]
    [Google Scholar]
  17. Mathee K., Narasimhan G., Valdes C., Qiu X., Matewish J. M., Koehrsen M., Rokas A., Yandava C. N., Engels R.. & other authors ( 2008;). Dynamics of Pseudomonas aeruginosa genome evolution. Proc Natl Acad Sci U S A105:3100–3105 [CrossRef][PubMed]
    [Google Scholar]
  18. Miyata S. T., Kitaoka M., Brooks T. M., McAuley S. B., Pukatzki S.. ( 2011;). Vibrio cholerae requires the type VI secretion system virulence factor VasX to kill Dictyostelium discoideum . Infect Immun79:2941–2949 [CrossRef][PubMed]
    [Google Scholar]
  19. Naughton S., Parker D., Seemann T., Thomas T., Turnbull L., Rose B., Bye P., Cordwell S., Whitchurch C., Manos J.. ( 2011;). Pseudomonas aeruginosa AES-1 exhibits increased virulence gene expression during chronic infection of cystic fibrosis lung. PLoS ONE6:e24526 [CrossRef][PubMed]
    [Google Scholar]
  20. Pan Y. J., Lin T. L., Hsu C. R., Wang J. T.. ( 2011;). Use of a Dictyostelium model for isolation of genetic loci associated with phagocytosis and virulence in Klebsiella pneumoniae . Infect Immun79:997–1006 [CrossRef][PubMed]
    [Google Scholar]
  21. Pukatzki S., Kessin R. H., Mekalanos J. J.. ( 2002;). The human pathogen Pseudomonas aeruginosa utilizes conserved virulence pathways to infect the social amoeba Dictyostelium discoideum . Proc Natl Acad Sci U S A99:3159–3164 [CrossRef][PubMed]
    [Google Scholar]
  22. Rozen S., Skaletsky H. J.. ( 2000;). Primer3 on the WWW for general users and for biologist programmers. Bioinformatics Methods and Protocols: Methods in Molecular Biology365–386 Krawetz S., Misener S.. Totowa, NJ: Humana Press; [CrossRef]
    [Google Scholar]
  23. Savli H., Karadenizli A., Kolayli F., Gundes S., Ozbek U., Vahaboglu H.. ( 2003;). Expression stability of six housekeeping genes: a proposal for resistance gene quantification studies of Pseudomonas aeruginosa by real-time quantitative RT-PCR. J Med Microbiol52:403–408 [CrossRef][PubMed]
    [Google Scholar]
  24. Segata N., Izard J., Waldron L., Gevers D., Miropolsky L., Garrett W. S., Huttenhower C.. ( 2011;). Metagenomic biomarker discovery and explanation. Genome Biol12:R60 [CrossRef][PubMed]
    [Google Scholar]
  25. Shaver C. M., Hauser A. R.. ( 2004;). Relative contributions of Pseudomonas aeruginosa ExoU, ExoS, and ExoT to virulence in the lung. Infect Immun72:6969–6977 [CrossRef][PubMed]
    [Google Scholar]
  26. Shaver C. M., Hauser A. R.. ( 2006;). Interactions between effector proteins of the Pseudomonas aeruginosa type III secretion system do not significantly affect several measures of disease severity in mammals. Microbiology152:143–152 [CrossRef][PubMed]
    [Google Scholar]
  27. Shevchuk O., Steinert M.. ( 2009;). Screening of virulence traits in Legionella pneumophila and analysis of the host susceptibility to infection by using the Dictyostelium host model system. Methods Mol Biol470:47–56 [CrossRef][PubMed]
    [Google Scholar]
  28. Sillo A., Matthias J., Konertz R., Bozzaro S., Eichinger L.. ( 2011;). Salmonella typhimurium is pathogenic for Dictyostelium cells and subverts the starvation response. Cell Microbiol13:1793–1811 [CrossRef][PubMed]
    [Google Scholar]
  29. Stewart R. M., Wiehlmann L., Ashelford K. E., Preston S. J., Frimmersdorf E., Campbell B. J., Neal T. J., Hall N., Tuft S.. & other authors ( 2011;). Genetic characterization indicates that a specific subpopulation of Pseudomonas aeruginosa is associated with keratitis infections. J Clin Microbiol49:993–1003 [CrossRef][PubMed]
    [Google Scholar]
  30. Syrmis M. W., O’Carroll M. R., Sloots T. P., Coulter C., Wainwright C. E., Bell S. C., Nissen M. D.. ( 2004;). Rapid genotyping of Pseudomonas aeruginosa isolates harboured by adult and paediatric patients with cystic fibrosis using repetitive-element-based PCR assays. J Med Microbiol53:1089–1096 [CrossRef][PubMed]
    [Google Scholar]
  31. Tan M. W., Rahme L. G., Sternberg J. A., Tompkins R. G., Ausubel F. M.. ( 1999;). Pseudomonas aeruginosa killing of Caenorhabditis elegans used to identify P. aeruginosa virulence factors. Proc Natl Acad Sci U S A96:2408–2413 [CrossRef][PubMed]
    [Google Scholar]
  32. Valderrey A. D., Pozuelo M. J., Jiménez P. A., Maciá M. D., Oliver A., Rotger R.. ( 2010;). Chronic colonization by Pseudomonas aeruginosa of patients with obstructive lung diseases: cystic fibrosis, bronchiectasis, and chronic obstructive pulmonary disease. Diagn Microbiol Infect Dis68:20–27 [CrossRef][PubMed]
    [Google Scholar]
  33. Van de Peer Y., De Wachter R.. ( 1994;). treecon for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci10:569–570[PubMed]
    [Google Scholar]
  34. Wareham D. W., Curtis M. A.. ( 2007;). A genotypic and phenotypic comparison of type III secretion profiles of Pseudomonas aeruginosa cystic fibrosis and bacteremia isolates. Int J Med Microbiol297:227–234 [CrossRef][PubMed]
    [Google Scholar]
  35. Wolfgang M. C., Kulasekara B. R., Liang X., Boyd D., Wu K., Yang Q., Miyada C. G., Lory S.. ( 2003;). Conservation of genome content and virulence determinants among clinical and environmental isolates of Pseudomonas aeruginosa . Proc Natl Acad Sci U S A100:8484–8489 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.056689-0
Loading
/content/journal/micro/10.1099/mic.0.056689-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error