1887

Abstract

is a ubiquitous environmental bacterium responsible for a variety of infections in humans, as well as in animal hosts. While the evolution of virulence in strains isolated from chronic lung infection in cystic fibrosis (CF) patients has been extensively studied, the virulence phenotype of isolated from other infection types or from the environment is currently not well characterized. Here we report an extensive analysis of the virulence of strains isolated from acute infections compared with population structure. Virulence profiles of individual strains were also compared with the expression levels of the gene, the transcriptional regulator of the rhl quorum-sensing system, and the gene encoding Crc, a global regulator controlling catabolite repression and carbon metabolism. Additionally, the presence/absence of the two mutually exclusive genes, and , encoding effectors of the type III secretion system, was assessed. In order to capture the widest range of genetic variability, a collection of 120 clinical strains was initially characterized by repetitive element-based PCR genotyping, and a selection of 27 strains belonging to different clonal lineages was subsequently tested using three different virulence assays, including two assays on different growth media, and a fast-killing assay. We show that the parallel application of virulence assays can be used to quantitatively assess this complex, multifactorial phenotypic trait. We observed a wide spectrum of virulence phenotypes ranging from weakly to highly aggressive, indicating that clinical strains isolated from acute infections can present a reduced or altered virulence phenotype. Genotypic associations only partially correlated with virulence profiles and virulence gene expression, whereas the presence of either or was not significantly correlated with virulence. Interestingly, the expression of showed a significant and positive correlation with the virulence profiles obtained with the three assays, while the expression of was either negatively or not correlated with virulence, depending on the assay.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.056689-0
2012-08-01
2021-10-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/8/2089.html?itemId=/content/journal/micro/10.1099/mic.0.056689-0&mimeType=html&fmt=ahah

References

  1. Alibaud L., Köhler T., Coudray A., Prigent-Combaret C., Bergeret E., Perrin J., Benghezal M., Reimmann C., Gauthier Y. & other authors ( 2008). Pseudomonas aeruginosa virulence genes identified in a Dictyostelium host model. Cell Microbiol 10:729–740 [View Article][PubMed]
    [Google Scholar]
  2. Bonifait L., Charette S. J., Filion G., Gottschalk M., Grenier D. ( 2011). Amoeba host model for evaluation of Streptococcus suis virulence. Appl Environ Microbiol 77:6271–6273 [View Article][PubMed]
    [Google Scholar]
  3. Bradbury R. S., Roddam L. F., Merritt A., Reid D. W., Champion A. C. ( 2010). Virulence gene distribution in clinical, nosocomial and environmental isolates of Pseudomonas aeruginosa . J Med Microbiol 59:881–890 [View Article][PubMed]
    [Google Scholar]
  4. Bradbury R. S., Reid D. W., Inglis T. J., Champion A. C. ( 2011). Decreased virulence of cystic fibrosis Pseudomonas aeruginosa in Dictyostelium discoideum . Microbiol Immunol 55:224–230 [View Article][PubMed]
    [Google Scholar]
  5. Bragonzi A., Paroni M., Nonis A., Cramer N., Montanari S., Rejman J., Di Serio C., Döring G., Tümmler B. ( 2009). Pseudomonas aeruginosa microevolution during cystic fibrosis lung infection establishes clones with adapted virulence. Am J Respir Crit Care Med 180:138–145 [View Article][PubMed]
    [Google Scholar]
  6. Cosson P., Zulianello L., Join-Lambert O., Faurisson F., Gebbie L., Benghezal M., Van Delden C., Curty L. K., Köhler T. ( 2002). Pseudomonas aeruginosa virulence analyzed in a Dictyostelium discoideum host system. J Bacteriol 184:3027–3033 [View Article][PubMed]
    [Google Scholar]
  7. Engel J., Balachandran P. ( 2009). Role of Pseudomonas aeruginosa type III effectors in disease. Curr Opin Microbiol 12:61–66 [View Article][PubMed]
    [Google Scholar]
  8. Feltman H., Schulert G., Khan S., Jain M., Peterson L., Hauser A. R. ( 2001). Prevalence of type III secretion genes in clinical and environmental isolates of Pseudomonas aeruginosa . Microbiology 147:2659–2669[PubMed]
    [Google Scholar]
  9. Froquet R., Lelong E., Marchetti A., Cosson P. ( 2009). Dictyostelium discoideum: a model host to measure bacterial virulence. Nat Protoc 4:25–30 [View Article][PubMed]
    [Google Scholar]
  10. Fumanelli L., Iannelli M., Janjua H. A., Jousson O. ( 2011). Mathematical modeling of bacterial virulence and host–pathogen interactions in the Dictyostelium/Pseudomonas system. J Theor Biol 270:19–24 [View Article][PubMed]
    [Google Scholar]
  11. Hasselbring B. M., Patel M. K., Schell M. A. ( 2011). Dictyostelium discoideum as a model system for identification of Burkholderia pseudomallei virulence factors. Infect Immun 79:2079–2088 [View Article][PubMed]
    [Google Scholar]
  12. Hogardt M., Heesemann J. ( 2010). Adaptation of Pseudomonas aeruginosa during persistence in the cystic fibrosis lung. Int J Med Microbiol 300:557–562 [View Article][PubMed]
    [Google Scholar]
  13. Kesarwani M., Hazan R., He J., Que Y. A., Apidianakis Y., Lesic B., Xiao G., Dekimpe V., Milot S. & other authors ( 2011). A quorum sensing regulated small volatile molecule reduces acute virulence and promotes chronic infection phenotypes. PLoS Pathog 7:e1002192 [View Article][PubMed]
    [Google Scholar]
  14. Lelong E., Marchetti A., Simon M., Burns J. L., van Delden C., Köhler T., Cosson P. ( 2011). Evolution of Pseudomonas aeruginosa virulence in infected patients revealed in a Dictyostelium discoideum host model. Clin Microbiol Infect 17:1415–1420[PubMed] [CrossRef]
    [Google Scholar]
  15. Linares J. F., Moreno R., Fajardo A., Martínez-Solano L., Escalante R., Rojo F., Martínez J. L. ( 2010). The global regulator Crc modulates metabolism, susceptibility to antibiotics and virulence in Pseudomonas aeruginosa . Environ Microbiol 12:3196–3212 [View Article][PubMed]
    [Google Scholar]
  16. Llanes C., Hocquet D., Vogne C., Benali-Baitich D., Neuwirth C., Plésiat P. ( 2004). Clinical strains of Pseudomonas aeruginosa overproducing MexAB-OprM and MexXY efflux pumps simultaneously. Antimicrob Agents Chemother 48:1797–1802 [View Article][PubMed]
    [Google Scholar]
  17. Mathee K., Narasimhan G., Valdes C., Qiu X., Matewish J. M., Koehrsen M., Rokas A., Yandava C. N., Engels R. & other authors ( 2008). Dynamics of Pseudomonas aeruginosa genome evolution. Proc Natl Acad Sci U S A 105:3100–3105 [View Article][PubMed]
    [Google Scholar]
  18. Miyata S. T., Kitaoka M., Brooks T. M., McAuley S. B., Pukatzki S. ( 2011). Vibrio cholerae requires the type VI secretion system virulence factor VasX to kill Dictyostelium discoideum . Infect Immun 79:2941–2949 [View Article][PubMed]
    [Google Scholar]
  19. Naughton S., Parker D., Seemann T., Thomas T., Turnbull L., Rose B., Bye P., Cordwell S., Whitchurch C., Manos J. ( 2011). Pseudomonas aeruginosa AES-1 exhibits increased virulence gene expression during chronic infection of cystic fibrosis lung. PLoS ONE 6:e24526 [View Article][PubMed]
    [Google Scholar]
  20. Pan Y. J., Lin T. L., Hsu C. R., Wang J. T. ( 2011). Use of a Dictyostelium model for isolation of genetic loci associated with phagocytosis and virulence in Klebsiella pneumoniae . Infect Immun 79:997–1006 [View Article][PubMed]
    [Google Scholar]
  21. Pukatzki S., Kessin R. H., Mekalanos J. J. ( 2002). The human pathogen Pseudomonas aeruginosa utilizes conserved virulence pathways to infect the social amoeba Dictyostelium discoideum . Proc Natl Acad Sci U S A 99:3159–3164 [View Article][PubMed]
    [Google Scholar]
  22. Rozen S., Skaletsky H. J. ( 2000). Primer3 on the WWW for general users and for biologist programmers. Bioinformatics Methods and Protocols: Methods in Molecular Biology365–386 Krawetz S., Misener S. Totowa, NJ: Humana Press; [View Article]
    [Google Scholar]
  23. Savli H., Karadenizli A., Kolayli F., Gundes S., Ozbek U., Vahaboglu H. ( 2003). Expression stability of six housekeeping genes: a proposal for resistance gene quantification studies of Pseudomonas aeruginosa by real-time quantitative RT-PCR. J Med Microbiol 52:403–408 [View Article][PubMed]
    [Google Scholar]
  24. Segata N., Izard J., Waldron L., Gevers D., Miropolsky L., Garrett W. S., Huttenhower C. ( 2011). Metagenomic biomarker discovery and explanation. Genome Biol 12:R60 [View Article][PubMed]
    [Google Scholar]
  25. Shaver C. M., Hauser A. R. ( 2004). Relative contributions of Pseudomonas aeruginosa ExoU, ExoS, and ExoT to virulence in the lung. Infect Immun 72:6969–6977 [View Article][PubMed]
    [Google Scholar]
  26. Shaver C. M., Hauser A. R. ( 2006). Interactions between effector proteins of the Pseudomonas aeruginosa type III secretion system do not significantly affect several measures of disease severity in mammals. Microbiology 152:143–152 [View Article][PubMed]
    [Google Scholar]
  27. Shevchuk O., Steinert M. ( 2009). Screening of virulence traits in Legionella pneumophila and analysis of the host susceptibility to infection by using the Dictyostelium host model system. Methods Mol Biol 470:47–56 [View Article][PubMed]
    [Google Scholar]
  28. Sillo A., Matthias J., Konertz R., Bozzaro S., Eichinger L. ( 2011). Salmonella typhimurium is pathogenic for Dictyostelium cells and subverts the starvation response. Cell Microbiol 13:1793–1811 [View Article][PubMed]
    [Google Scholar]
  29. Stewart R. M., Wiehlmann L., Ashelford K. E., Preston S. J., Frimmersdorf E., Campbell B. J., Neal T. J., Hall N., Tuft S. & other authors ( 2011). Genetic characterization indicates that a specific subpopulation of Pseudomonas aeruginosa is associated with keratitis infections. J Clin Microbiol 49:993–1003 [View Article][PubMed]
    [Google Scholar]
  30. Syrmis M. W., O’Carroll M. R., Sloots T. P., Coulter C., Wainwright C. E., Bell S. C., Nissen M. D. ( 2004). Rapid genotyping of Pseudomonas aeruginosa isolates harboured by adult and paediatric patients with cystic fibrosis using repetitive-element-based PCR assays. J Med Microbiol 53:1089–1096 [View Article][PubMed]
    [Google Scholar]
  31. Tan M. W., Rahme L. G., Sternberg J. A., Tompkins R. G., Ausubel F. M. ( 1999). Pseudomonas aeruginosa killing of Caenorhabditis elegans used to identify P. aeruginosa virulence factors. Proc Natl Acad Sci U S A 96:2408–2413 [View Article][PubMed]
    [Google Scholar]
  32. Valderrey A. D., Pozuelo M. J., Jiménez P. A., Maciá M. D., Oliver A., Rotger R. ( 2010). Chronic colonization by Pseudomonas aeruginosa of patients with obstructive lung diseases: cystic fibrosis, bronchiectasis, and chronic obstructive pulmonary disease. Diagn Microbiol Infect Dis 68:20–27 [View Article][PubMed]
    [Google Scholar]
  33. Van de Peer Y., De Wachter R. ( 1994). treecon for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10:569–570[PubMed]
    [Google Scholar]
  34. Wareham D. W., Curtis M. A. ( 2007). A genotypic and phenotypic comparison of type III secretion profiles of Pseudomonas aeruginosa cystic fibrosis and bacteremia isolates. Int J Med Microbiol 297:227–234 [View Article][PubMed]
    [Google Scholar]
  35. Wolfgang M. C., Kulasekara B. R., Liang X., Boyd D., Wu K., Yang Q., Miyada C. G., Lory S. ( 2003). Conservation of genome content and virulence determinants among clinical and environmental isolates of Pseudomonas aeruginosa . Proc Natl Acad Sci U S A 100:8484–8489 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.056689-0
Loading
/content/journal/micro/10.1099/mic.0.056689-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error