1887

Abstract

The bacterial endospore is the most resilient biological structure known. Multiple protective integument layers shield the spore core and promote spore dehydration and dormancy. Dormancy is broken when a spore germinates and becomes a metabolically active vegetative cell. Germination requires the breakdown of a modified layer of peptidoglycan (PG) known as the spore cortex. This study reports and analyses of the SleL protein. SleL is a spore cortex lytic enzyme composed of three conserved domains: two N-terminal LysM domains and a C-terminal glycosyl hydrolase family 18 domain. Derivatives of SleL containing both, one or no LysM domains were purified and characterized. SleL is incapable of digesting intact cortical PG of either decoated spores or purified spore sacculi. However, SleL derivatives can hydrolyse fragmented PG substrates containing muramic-δ-lactam recognition determinants. The muropeptides that result from SleL hydrolysis are the products of -acetylglucosaminidase activity. These muropeptide products are small and readily released from the cortex matrix. Loss of the LysM domain(s) decreases both PG binding and hydrolysis activity but these domains do not appear to determine specificity for muramic-δ-lactam. When the SleL derivatives are expressed , those proteins lacking one or both LysM domains do not associate with the spore. Instead, these proteins remain in the mother cell and are apparently degraded. SleL with both LysM domains localizes to the coat or cortex of the endospore. The information revealed by elucidating the role of SleL and its domains in sporulation and germination is important in designing new spore decontamination methods. By exploiting germination-specific lytic enzymes, eradication techniques may be greatly simplified.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.056630-0
2012-05-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/5/1359.html?itemId=/content/journal/micro/10.1099/mic.0.056630-0&mimeType=html&fmt=ahah

References

  1. Albrink W. S. ( 1961). Pathogenesis of inhalation anthrax. Bacteriol Rev 25:268–273[PubMed]
    [Google Scholar]
  2. Atrih A., Zöllner P., Allmaier G., Foster S. J. ( 1996). Structural analysis of Bacillus subtilis 168 endospore peptidoglycan and its role during differentiation. J Bacteriol 178:6173–6183[PubMed]
    [Google Scholar]
  3. Atrih A., Zöllner P., Allmaier G., Williamson M. P., Foster S. J. ( 1998). Peptidoglycan structural dynamics during germination of Bacillus subtilis 168 endospores. J Bacteriol 180:4603–4612[PubMed]
    [Google Scholar]
  4. Austin B. P., Nallamsetty S., Waugh D. S. ( 2009). Hexahistidine-tagged maltose-binding protein as a fusion partner for the production of soluble recombinant proteins in Escherichia coli. Methods Mol Biol 498:157–172 [View Article][PubMed]
    [Google Scholar]
  5. Buist G., Steen A., Kok J., Kuipers O. P. ( 2008). LysM, a widely distributed protein motif for binding to (peptido)glycans. Mol Microbiol 68:838–847 [View Article][PubMed]
    [Google Scholar]
  6. Chen Y., Miyata S., Makino S., Moriyama R. ( 1997). Molecular characterization of a germination-specific muramidase from Clostridium perfringens S40 spores and nucleotide sequence of the corresponding gene. J Bacteriol 179:3181–3187[PubMed]
    [Google Scholar]
  7. Chen Y., Fukuoka S., Makino S. ( 2000). A novel spore peptidoglycan hydrolase of Bacillus cereus: biochemical characterization and nucleotide sequence of the corresponding gene, sleL . J Bacteriol 182:1499–1506 [View Article][PubMed]
    [Google Scholar]
  8. Costa T., Isidro A. L., Moran C. P. Jr, Henriques A. O. ( 2006). Interaction between coat morphogenetic proteins SafA and SpoVID. J Bacteriol 188:7731–7741 [View Article][PubMed]
    [Google Scholar]
  9. Dowd M. M., Orsburn B., Popham D. L. ( 2008). Cortex peptidoglycan lytic activity in germinating Bacillus anthracis spores. J Bacteriol 190:4541–4548 [View Article][PubMed]
    [Google Scholar]
  10. Foster S. J., Johnstone K. ( 1987). Purification and properties of a germination-specific cortex-lytic enzyme from spores of Bacillus megaterium KM. Biochem J 242:573–579[PubMed]
    [Google Scholar]
  11. Gerhardt P., Marquis R. E. ( 1989). Spore thermoresistance mechanisms. Regulation of Prokaryotic Development43–63 Smith I., Slepecky R. A., Setlow P. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  12. Heffron J. D., Orsburn B., Popham D. L. ( 2009). Roles of germination-specific lytic enzymes CwlJ and SleB in Bacillus anthracis . J Bacteriol 191:2237–2247 [View Article][PubMed]
    [Google Scholar]
  13. Heffron J. D., Lambert E. A., Sherry N., Popham D. L. ( 2010). Contributions of four cortex lytic enzymes to germination of Bacillus anthracis spores. J Bacteriol 192:763–770 [View Article][PubMed]
    [Google Scholar]
  14. Heffron J. D., Sherry N., Popham D. L. ( 2011). In vitro studies of peptidoglycan binding and hydrolysis by the Bacillus anthracis germination-specific lytic enzyme SleB. J Bacteriol 193:125–131 [View Article][PubMed]
    [Google Scholar]
  15. Hu K., Yang H., Liu G., Tan H. ( 2007). Cloning and identification of a gene encoding spore cortex-lytic enzyme in Bacillus thuringiensis . Curr Microbiol 54:292–295 [View Article][PubMed]
    [Google Scholar]
  16. Imamura D., Kuwana R., Takamatsu H., Watabe K. ( 2010). Localization of proteins to different layers and regions of Bacillus subtilis spore coats. J Bacteriol 192:518–524 [View Article][PubMed]
    [Google Scholar]
  17. Ishikawa S., Yamane K., Sekiguchi J. ( 1998). Regulation and characterization of a newly deduced cell wall hydrolase gene (cwlJ) which affects germination of Bacillus subtilis spores. J Bacteriol 180:1375–1380[PubMed]
    [Google Scholar]
  18. Janes B. K., Stibitz S. ( 2006). Routine markerless gene replacement in Bacillus anthracis . Infect Immun 74:1949–1953 [View Article][PubMed]
    [Google Scholar]
  19. Kapust R. B., Tözsér J., Fox J. D., Anderson D. E., Cherry S., Copeland T. D., Waugh D. S. ( 2001). Tobacco etch virus protease: mechanism of autolysis and rational design of stable mutants with wild-type catalytic proficiency. Protein Eng 14:993–1000 [View Article][PubMed]
    [Google Scholar]
  20. Kim H. U., Goepfert J. M. ( 1974). A sporulation medium for Bacillus anthracis . J Appl Bacteriol 37:265–267 [View Article][PubMed]
    [Google Scholar]
  21. Kodama T., Takamatsu H., Asai K., Kobayashi K., Ogasawara N., Watabe K. ( 1999). The Bacillus subtilis yaaH gene is transcribed by SigE RNA polymerase during sporulation, and its product is involved in germination of spores. J Bacteriol 181:4584–4591[PubMed]
    [Google Scholar]
  22. Kodama T., Takamatsu H., Asai K., Ogasawara N., Sadaie Y., Watabe K. ( 2000). Synthesis and characterization of the spore proteins of Bacillus subtilis YdhD, YkuD, and YkvP, which carry a motif conserved among cell wall binding proteins. J Biochem 128:655–663[PubMed] [CrossRef]
    [Google Scholar]
  23. Lambert E. A., Popham D. L. ( 2008). The Bacillus anthracis SleL (YaaH) protein is an N-acetylglucosaminidase involved in spore cortex depolymerization. J Bacteriol 190:7601–7607 [View Article][PubMed]
    [Google Scholar]
  24. Leighton T. J., Doi R. H. ( 1971). The stability of messenger ribonucleic acid during sporulation in Bacillus subtilis . J Biol Chem 246:3189–3195[PubMed]
    [Google Scholar]
  25. Liu H., Bergman N. H., Thomason B., Shallom S., Hazen A., Crossno J., Rasko D. A., Ravel J., Read T. D. & other authors ( 2004). Formation and composition of the Bacillus anthracis endospore. J Bacteriol 186:164–178 [View Article][PubMed]
    [Google Scholar]
  26. Makino S., Moriyama R. ( 2002). Hydrolysis of cortex peptidoglycan during bacterial spore germination. Med Sci Monit 8:RA119–RA127[PubMed]
    [Google Scholar]
  27. Makino S., Ito N., Inoue T., Miyata S., Moriyama R. ( 1994). A spore-lytic enzyme released from Bacillus cereus spores during germination. Microbiology 140:1403–1410 [View Article][PubMed]
    [Google Scholar]
  28. Marchler-Bauer A., Anderson J. B., Cherukuri P. F., DeWeese-Scott C., Geer L. Y., Gwadz M., He S., Hurwitz D. I., Jackson J. D. & other authors ( 2005). CDD: a Conserved Domain Database for protein classification. Nucleic Acids Res 33:Database issue)D192–D196 [View Article][PubMed]
    [Google Scholar]
  29. McKenney P. T., Driks A., Eskandarian H. A., Grabowski P., Guberman J., Wang K. H., Gitai Z., Eichenberger P. ( 2010). A distance-weighted interaction map reveals a previously uncharacterized layer of the Bacillus subtilis spore coat. Curr Biol 20:934–938 [View Article][PubMed]
    [Google Scholar]
  30. Meador-Parton J., Popham D. L. ( 2000). Structural analysis of Bacillus subtilis spore peptidoglycan during sporulation. J Bacteriol 182:4491–4499 [View Article][PubMed]
    [Google Scholar]
  31. Miyata S., Moriyama R., Miyahara N., Makino S. ( 1995). A gene (sleC) encoding a spore-cortex-lytic enzyme from Clostridium perfringens S40 spores; cloning, sequence analysis and molecular characterization. Microbiology 141:2643–2650 [View Article][PubMed]
    [Google Scholar]
  32. Mock M., Fouet A. ( 2001). Anthrax. Annu Rev Microbiol 55:647–671 [View Article][PubMed]
    [Google Scholar]
  33. Moir A., Smith D. A. ( 1990). The genetics of bacterial spore germination. Annu Rev Microbiol 44:531–553 [View Article][PubMed]
    [Google Scholar]
  34. Moriyama R., Hattori A., Miyata S., Kudoh S., Makino S. ( 1996a). A gene (sleB) encoding a spore cortex-lytic enzyme from Bacillus subtilis and response of the enzyme to l-alanine-mediated germination. J Bacteriol 178:6059–6063[PubMed]
    [Google Scholar]
  35. Moriyama R., Kudoh S., Miyata S., Nonobe S., Hattori A., Makino S. ( 1996b). A germination-specific spore cortex-lytic enzyme from Bacillus cereus spores: cloning and sequencing of the gene and molecular characterization of the enzyme. J Bacteriol 178:5330–5332[PubMed]
    [Google Scholar]
  36. Nallamsetty S., Waugh D. S. ( 2007). A generic protocol for the expression and purification of recombinant proteins in Escherichia coli using a combinatorial His6-maltose binding protein fusion tag. Nat Protoc 2:383–391 [View Article][PubMed]
    [Google Scholar]
  37. Nicholson W. L., Setlow P. ( 1990). Sporulation, germination, and outgrowth. Molecular Biological Methods for Bacillus391–450 Harwood C. R., Cutting S. M. Chichester, UK: Wiley;
    [Google Scholar]
  38. Nicholson W. L., Munakata N., Horneck G., Melosh H. J., Setlow P. ( 2000). Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol Mol Biol Rev 64:548–572 [View Article][PubMed]
    [Google Scholar]
  39. Ozin A. J., Henriques A. O., Yi H., Moran C. P. Jr ( 2000). Morphogenetic proteins SpoVID and SafA form a complex during assembly of the Bacillus subtilis spore coat. J Bacteriol 182:1828–1833 [View Article][PubMed]
    [Google Scholar]
  40. Pace C. N., Vajdos F., Fee L., Grimsley G., Gray T. ( 1995). How to measure and predict the molar absorption coefficient of a protein. Protein Sci 4:2411–2423 [View Article][PubMed]
    [Google Scholar]
  41. Paidhungat M., Setlow B., Daniels W. B., Hoover D., Papafragkou E., Setlow P. ( 2002). Mechanisms of induction of germination of Bacillus subtilis spores by high pressure. Appl Environ Microbiol 68:3172–3175 [View Article][PubMed]
    [Google Scholar]
  42. Popham D. L., Setlow P. ( 1993). The cortical peptidoglycan from spores of Bacillus megaterium and Bacillus subtilis is not highly cross-linked. J Bacteriol 175:2767–2769[PubMed]
    [Google Scholar]
  43. Popham D. L., Helin J., Costello C. E., Setlow P. ( 1996a). Muramic lactam in peptidoglycan of Bacillus subtilis spores is required for spore outgrowth but not for spore dehydration or heat resistance. Proc Natl Acad Sci U S A 93:15405–15410 [View Article][PubMed]
    [Google Scholar]
  44. Popham D. L., Helin J., Costello C. E., Setlow P. ( 1996b). Analysis of the peptidoglycan structure of Bacillus subtilis endospores. J Bacteriol 178:6451–6458[PubMed]
    [Google Scholar]
  45. Sekiguchi J., Akeo K., Yamamoto H., Khasanov F. K., Alonso J. C., Kuroda A. ( 1995). Nucleotide sequence and regulation of a new putative cell wall hydrolase gene, cwlD, which affects germination in Bacillus subtilis . J Bacteriol 177:5582–5589[PubMed]
    [Google Scholar]
  46. Setlow P. ( 2000). Resistance of bacterial spores. Bacterial Stress Responses217–230 Storz G., Hengge-Aronis R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  47. Setlow P. ( 2003). Spore germination. Curr Opin Microbiol 6:550–556 [View Article][PubMed]
    [Google Scholar]
  48. Setlow B., Melly E., Setlow P. ( 2001). Properties of spores of Bacillus subtilis blocked at an intermediate stage in spore germination. J Bacteriol 183:4894–4899 [View Article][PubMed]
    [Google Scholar]
  49. Setlow B., Peng L., Loshon C. A., Li Y. Q., Christie G., Setlow P. ( 2009). Characterization of the germination of Bacillus megaterium spores lacking enzymes that degrade the spore cortex. J Appl Microbiol 107:318–328 [View Article][PubMed]
    [Google Scholar]
  50. Shao X., Jiang M., Yu Z., Cai H., Li L. ( 2009). Surface display of heterologous proteins in Bacillus thuringiensis using a peptidoglycan hydrolase anchor. Microb Cell Fact 8:48 [View Article][PubMed]
    [Google Scholar]
  51. Steen A., Buist G., Horsburgh G. J., Venema G., Kuipers O. P., Foster S. J., Kok J. ( 2005). AcmA of Lactococcus lactis is an N-acetylglucosaminidase with an optimal number of LysM domains for proper functioning. FEBS J 272:2854–2868 [View Article][PubMed]
    [Google Scholar]
  52. Terwisscha van Scheltinga A. C., Armand S., Kalk K. H., Isogai A., Henrissat B., Dijkstra B. W. ( 1995). Stereochemistry of chitin hydrolysis by a plant chitinase/lysozyme and X-ray structure of a complex with allosamidin: evidence for substrate assisted catalysis. Biochemistry 34:15619–15623 [View Article][PubMed]
    [Google Scholar]
  53. van Aalten D. M., Komander D., Synstad B., Gåseidnes S., Peter M. G., Eijsink V. G. ( 2001). Structural insights into the catalytic mechanism of a family 18 exo-chitinase. Proc Natl Acad Sci U S A 98:8979–8984 [View Article][PubMed]
    [Google Scholar]
  54. van den Ent F., Löwe J. ( 2006). RF cloning: a restriction-free method for inserting target genes into plasmids. J Biochem Biophys Methods 67:67–74 [View Article][PubMed]
    [Google Scholar]
  55. Wang K. H., Isidro A. L., Domingues L., Eskandarian H. A., McKenney P. T., Drew K., Grabowski P., Chua M. H., Barry S. N. & other authors ( 2009). The coat morphogenetic protein SpoVID is necessary for spore encasement in Bacillus subtilis . Mol Microbiol 74:634–649 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.056630-0
Loading
/content/journal/micro/10.1099/mic.0.056630-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error