1887

Abstract

Flagella provide advantages to by facilitating taxis towards nutrients and away from unfavourable niches. On the other hand, flagellation is an energy sink to the bacterial cell, and flagella also stimulate host innate inflammatory responses against infecting bacteria. The flagellar assembly pathway is ordered and under a complex regulatory circuit that involves three classes of temporally regulated promoters as well as the flagellar master regulator FlhDC. We report here that transcription of the operon from the class 1 promoter is under negative regulation by MatA, a key activator of the common (or ) fimbria operon that enhances biofilm formation by . Ectopic expression of MatA completely precluded motility and flagellar synthesis in the meningitis-associated isolate IHE 3034. Northern blotting, analysis of chromosomal promoter– fusions and electrophoretic mobility shift assays revealed an interaction between MatA and the promoter region that apparently repressed flagellum biosynthesis. However, inactivation of in the chromosome of IHE 3034 had only a minor effect on flagellation, which underlines the complexity of regulatory signals that promote flagellation in . We propose that the opposite regulatory actions of MatA on and on promoters advance the adaptation of from a planktonic to an adhesive lifestyle.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.056499-0
2012-06-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/6/1444.html?itemId=/content/journal/micro/10.1099/mic.0.056499-0&mimeType=html&fmt=ahah

References

  1. Adler J., Templeton B. ( 1967). The effect of environmental conditions on the motility of Escherichia coli . J Gen Microbiol 46:175–184[PubMed] [CrossRef]
    [Google Scholar]
  2. Avelino F., Saldaña Z., Islam S., Monteiro-Neto V., Dall’Agnol M., Eslava C. A., Girón J. A. ( 2010). The majority of enteroaggregative Escherichia coli strains produce the E. coli common pilus when adhering to cultured epithelial cells. Int J Med Microbiol 300:440–448 [View Article][PubMed]
    [Google Scholar]
  3. Barker C. S., Prüß B. M., Matsumura P. ( 2004). Increased motility of Escherichia coli by insertion sequence element integration into the regulatory region of the flhD operon. J Bacteriol 186:7529–7537[PubMed] [CrossRef]
    [Google Scholar]
  4. Bertin P., Terao E., Lee E. H., Lejeune P., Colson C., Danchin A., Collatz E. ( 1994). The H-NS protein is involved in the biogenesis of flagella in Escherichia coli . J Bacteriol 176:5537–5540[PubMed]
    [Google Scholar]
  5. Blackburn D., Husband A., Saldaña Z., Nada R. A., Klena J., Qadri F., Girón J. A. ( 2009). Distribution of the Escherichia coli common pilus among diverse strains of human enterotoxigenic E. coli . J Clin Microbiol 47:1781–1784 [View Article][PubMed]
    [Google Scholar]
  6. Brombacher E., Baratto A., Dorel C., Landini P. ( 2006). Gene expression regulation by the curli activator CsgD protein: modulation of cellulose biosynthesis and control of negative determinants for microbial adhesion. J Bacteriol 188:2027–2037 [View Article][PubMed]
    [Google Scholar]
  7. Brown J., Faulds-Pain A., Aldridge P. ( 2009). The coordination of flagellar gene expression and the flagellar assembly pathway. Pili and Flagella: Current Research and Future Trends99–120 Jarrell K. Norwich, UK: Caister Academic Press;
    [Google Scholar]
  8. Bryan A., Roesch P., Davis L., Moritz R., Pellett S., Welch R. A. ( 2006). Regulation of type 1 fimbriae by unlinked FimB- and FimE-like recombinases in uropathogenic Escherichia coli strain CFT073. Infect Immun 74:1072–1083[PubMed] [CrossRef]
    [Google Scholar]
  9. Clarke M. B., Sperandio V. ( 2005). Transcriptional regulation of flhDC by QseBC and σ28 (FliA) in enterohaemorrhagic Escherichia coli . Mol Microbiol 57:1734–1749 [View Article][PubMed]
    [Google Scholar]
  10. Cleary J., Lai L. C., Shaw R. K., Straatman-Iwanowska A., Donnenberg M. S., Frankel G., Knutton S. ( 2004). Enteropathogenic Escherichia coli (EPEC) adhesion to intestinal epithelial cells: role of bundle-forming pili (BFP), EspA filaments and intimin. Microbiology 150:527–538 [View Article][PubMed]
    [Google Scholar]
  11. Clegg S., Hughes K. T. ( 2002). FimZ is a molecular link between sticking and swimming in Salmonella enterica serovar Typhimurium. J Bacteriol 184:1209–1213 [View Article][PubMed]
    [Google Scholar]
  12. Connell I., Agace W., Klemm P., Schembri M., Mărild S., Svanborg C. ( 1996). Type 1 fimbrial expression enhances Escherichia coli virulence for the urinary tract. Proc Natl Acad Sci U S A 93:9827–9832 [View Article][PubMed]
    [Google Scholar]
  13. Croxen M. A., Finlay B. B. ( 2010). Molecular mechanisms of Escherichia coli pathogenicity. Nat Rev Microbiol 8:26–38[PubMed]
    [Google Scholar]
  14. Donnenberg M. S., Kaper J. B. ( 1991). Construction of an eae deletion mutant of enteropathogenic Escherichia coli by using a positive-selection suicide vector. Infect Immun 59:4310–4317[PubMed]
    [Google Scholar]
  15. Erdem A. L., Avelino F., Xicohtencatl-Cortes J., Girón J. A. ( 2007). Host protein binding and adhesive properties of H6 and H7 flagella of attaching and effacing Escherichia coli . J Bacteriol 189:7426–7435 [View Article][PubMed]
    [Google Scholar]
  16. Fabich A. J., Leatham M. P., Grissom J. E., Wiley G., Lai H., Najar F., Roe B. A., Cohen P. S., Conway T. ( 2011). Genotype and phenotypes of an intestine-adapted Escherichia coli K-12 mutant selected by animal passage for superior colonization. Infect Immun 79:2430–2439 [View Article][PubMed]
    [Google Scholar]
  17. Francez-Charlot A., Laugel B., Van Gemert A., Dubarry N., Wiorowski F., Castanié-Cornet M. P., Gutierrez C., Cam K. ( 2003). RcsCDB His-Asp phosphorelay system negatively regulates the flhDC operon in Escherichia coli . Mol Microbiol 49:823–832 [View Article][PubMed]
    [Google Scholar]
  18. Gaynes R., Edwards J. R. National Nosocomial Infections Surveillance System ( 2005). Overview of nosocomial infections caused by Gram-negative bacilli. Clin Infect Dis 41:848–854 [View Article][PubMed]
    [Google Scholar]
  19. Girón J. A., Torres A. G., Freer E., Kaper J. B. ( 2002). The flagella of enteropathogenic Escherichia coli mediate adherence to epithelial cells. Mol Microbiol 44:361–379 [View Article][PubMed]
    [Google Scholar]
  20. Gupta K., Scholes D., Stamm W. E. ( 1999). Increasing prevalence of antimicrobial resistance among uropathogens causing acute uncomplicated cystitis in women. JAMA 281:736–738[PubMed] [CrossRef]
    [Google Scholar]
  21. Hayashi F., Smith K. D., Ozinsky A., Hawn T. R., Yi E. C., Goodlett D. R., Eng J. K., Akira S., Underhill D. M., Aderem A. ( 2001). The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410:1099–1103 [View Article][PubMed]
    [Google Scholar]
  22. Ide N., Ikebe T., Kutsukake K. ( 1999). Reevaluation of the promoter structure of the class 3 flagellar operons of Escherichia coli and Salmonella . Genes Genet Syst 74:113–116 [View Article][PubMed]
    [Google Scholar]
  23. Karatan E., Watnick P. ( 2009). Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol Mol Biol Rev 73:310–347 [View Article][PubMed]
    [Google Scholar]
  24. Komeda Y. ( 1986). Transcriptional control of flagellar genes in Escherichia coli K-12. J Bacteriol 168:1315–1318[PubMed]
    [Google Scholar]
  25. Korhonen T. K., Virkola R., Holthöfer H. ( 1986). Localization of binding sites for purified Escherichia coli P fimbriae in the human kidney. Infect Immun 54:328–332[PubMed]
    [Google Scholar]
  26. Kutsukake K., Ohya Y., Iino T. ( 1990). Transcriptional analysis of the flagellar regulon of Salmonella typhimurium . J Bacteriol 172:741–747[PubMed]
    [Google Scholar]
  27. Lane M. C., Lockatell V., Monterosso G., Lamphier D., Weinert J., Hebel J. R., Johnson D. E., Mobley H. L. ( 2005). Role of motility in the colonization of uropathogenic Escherichia coli in the urinary tract. Infect Immun 73:7644–7656 [View Article][PubMed]
    [Google Scholar]
  28. Lane M. C., Simms A. N., Mobley H. L. ( 2007a). Complex interplay between type 1 fimbrial expression and flagellum-mediated motility of uropathogenic Escherichia coli . J Bacteriol 189:5523–5533 [View Article][PubMed]
    [Google Scholar]
  29. Lane M. C., Alteri C. J., Smith S. N., Mobley H. L. ( 2007b). Expression of flagella is coincident with uropathogenic Escherichia coli ascension to the upper urinary tract. Proc Natl Acad Sci U S A 104:16669–16674 [View Article][PubMed]
    [Google Scholar]
  30. Lasaro M. A., Salinger N., Zhang J., Wang Y., Zhong Z., Goulian M., Zhu J. ( 2009). F1C fimbriae play an important role in biofilm formation and intestinal colonization by the Escherichia coli commensal strain Nissle 1917. Appl Environ Microbiol 75:246–251 [View Article][PubMed]
    [Google Scholar]
  31. Lehti T. A., Bauchart P., Heikkinen J., Hacker J., Korhonen T. K., Dobrindt U., Westerlund-Wikström B. ( 2010). Mat fimbriae promote biofilm formation by meningitis-associated Escherichia coli . Microbiology 156:2408–2417 [View Article][PubMed]
    [Google Scholar]
  32. Lehti T. A., Heikkinen J., Korhonen T. K., Westerlund-Wikström B. ( 2012). The response regulator RcsB activates expression of Mat fimbriae in meningitic Escherichia coli . J Bacteriol
    [Google Scholar]
  33. Li C., Louise C. J., Shi W., Adler J. ( 1993). Adverse conditions which cause lack of flagella in Escherichia coli . J Bacteriol 175:2229–2235[PubMed]
    [Google Scholar]
  34. Li X., Rasko D. A., Lockatell C. V., Johnson D. E., Mobley H. L. ( 2001). Repression of bacterial motility by a novel fimbrial gene product. EMBO J 20:4854–4862 [View Article][PubMed]
    [Google Scholar]
  35. Liu X., Matsumura P. ( 1994). The FlhD/FlhC complex, a transcriptional activator of the Escherichia coli flagellar class II operons. J Bacteriol 176:7345–7351[PubMed]
    [Google Scholar]
  36. Luck S. N., Badea L., Bennett-Wood V., Robins-Browne R., Hartland E. L. ( 2006). Contribution of FliC to epithelial cell invasion by enterohemorrhagic Escherichia coli O113 : H21. Infect Immun 74:6999–7004 [View Article][PubMed]
    [Google Scholar]
  37. Mahajan A., Currie C. G., Mackie S., Tree J., McAteer S., McKendrick I., McNeilly T. N., Roe A., La Ragione R. M. et al. ( 2009). An investigation of the expression and adhesin function of H7 flagella in the interaction of Escherichia coli O157 : H7 with bovine intestinal epithelium. Cell Microbiol 11:121–137 [View Article][PubMed]
    [Google Scholar]
  38. Miller J. H. ( 1972). Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  39. Mobley H. L., Jarvis K. G., Elwood J. P., Whittle D. I., Lockatell C. V., Russell R. G., Johnson D. E., Donnenberg M. S., Warren J. W. ( 1993). Isogenic P-fimbrial deletion mutants of pyelonephritogenic Escherichia coli: the role of α Gal(1–4)β Gal binding in virulence of a wild-type strain. Mol Microbiol 10:143–155 [View Article][PubMed]
    [Google Scholar]
  40. Mytelka D. S., Chamberlin M. J. ( 1996). Escherichia coli fliAZY operon. J Bacteriol 178:24–34[PubMed]
    [Google Scholar]
  41. Ogasawara H., Yamamoto K., Ishihama A. ( 2011). Role of the biofilm master regulator CsgD in cross-regulation between biofilm formation and flagellar synthesis. J Bacteriol 193:2587–2597 [View Article][PubMed]
    [Google Scholar]
  42. Ohnishi K., Kutsukake K., Suzuki H., Iino T. ( 1990). Gene fliA encodes an alternative sigma factor specific for flagellar operons in Salmonella typhimurium . Mol Gen Genet 221:139–147 [View Article][PubMed]
    [Google Scholar]
  43. Ottemann K. M., Miller J. F. ( 1997). Roles for motility in bacterial–host interactions. Mol Microbiol 24:1109–1117[PubMed] [CrossRef]
    [Google Scholar]
  44. Parthasarathy G., Yao Y., Kim K. S. ( 2007). Flagella promote Escherichia coli K1 association with and invasion of human brain microvascular endothelial cells. Infect Immun 75:2937–2945 [View Article][PubMed]
    [Google Scholar]
  45. Pearson M. M., Mobley H. L. ( 2008). Repression of motility during fimbrial expression: identification of 14 mrpJ gene paralogues in Proteus mirabilis . Mol Microbiol 69:548–558 [View Article][PubMed]
    [Google Scholar]
  46. Pesavento C., Becker G., Sommerfeldt N., Possling A., Tschowri N., Mehlis A., Hengge R. ( 2008). Inverse regulatory coordination of motility and curli-mediated adhesion in Escherichia coli . Genes Dev 22:2434–2446 [View Article][PubMed]
    [Google Scholar]
  47. Pichon C., Héchard C., du Merle L., Chaudray C., Bonne I., Guadagnini S., Vandewalle A., Le Bouguénec C. ( 2009). Uropathogenic Escherichia coli AL511 requires flagellum to enter renal collecting duct cells. Cell Microbiol 11:616–628 [View Article][PubMed]
    [Google Scholar]
  48. Pouttu R., Westerlund-Wikström B., Lång H., Alsti K., Virkola R., Saarela U., Siitonen A., Kalkkinen N., Korhonen T. K. ( 2001). matB, a common fimbrillin gene of Escherichia coli, expressed in a genetically conserved, virulent clonal group. J Bacteriol 183:4727–4736 [View Article][PubMed]
    [Google Scholar]
  49. Pratt L. A., Kolter R. ( 1998). Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 30:285–293 [View Article][PubMed]
    [Google Scholar]
  50. Prigent-Combaret C., Vidal O., Dorel C., Lejeune P. ( 1999). Abiotic surface sensing and biofilm-dependent regulation of gene expression in Escherichia coli . J Bacteriol 181:5993–6002[PubMed]
    [Google Scholar]
  51. Prigent-Combaret C., Prensier G., Le Thi T. T., Vidal O., Lejeune P., Dorel C. ( 2000). Developmental pathway for biofilm formation in curli-producing Escherichia coli strains: role of flagella, curli and colanic acid. Environ Microbiol 2:450–464 [View Article][PubMed]
    [Google Scholar]
  52. Prüß B. M., Liu X., Hendrickson W., Matsumura P. ( 2001). FlhD/FlhC-regulated promoters analyzed by gene array and lacZ gene fusions. FEMS Microbiol Lett 197:91–97 [View Article][PubMed]
    [Google Scholar]
  53. Prüß B. M., Campbell J. W., Van Dyk T. K., Zhu C., Kogan Y., Matsumura P. ( 2003). FlhD/FlhC is a regulator of anaerobic respiration and the Entner-Doudoroff pathway through induction of the methyl-accepting chemotaxis protein Aer. J Bacteriol 185:534–543 [View Article][PubMed]
    [Google Scholar]
  54. Ramos H. C., Rumbo M., Sirard J. C. ( 2004). Bacterial flagellins: mediators of pathogenicity and host immune responses in mucosa. Trends Microbiol 12:509–517 [View Article][PubMed]
    [Google Scholar]
  55. Reiss D. J., Mobley H. L. ( 2011). Determination of target sequence bound by PapX, repressor of bacterial motility, in flhD promoter using systematic evolution of ligands by exponential enrichment (SELEX) and high throughput sequencing. J Biol Chem 286:44726–44738[PubMed] [CrossRef]
    [Google Scholar]
  56. Rendón M. A., Saldaña Z., Erdem A. L., Monteiro-Neto V., Vázquez A., Kaper J. B., Puente J. L., Girón J. A. ( 2007). Commensal and pathogenic Escherichia coli use a common pilus adherence factor for epithelial cell colonization. Proc Natl Acad Sci U S A 104:10637–10642[PubMed] [CrossRef]
    [Google Scholar]
  57. Römling U., Rohde M., Olsén A., Normark S., Reinköster J. ( 2000). AgfD, the checkpoint of multicellular and aggregative behaviour in Salmonella typhimurium regulates at least two independent pathways. Mol Microbiol 36:10–23 [View Article][PubMed]
    [Google Scholar]
  58. Roy K., Hilliard G. M., Hamilton D. J., Luo J., Ostmann M. M., Fleckenstein J. M. ( 2009). Enterotoxigenic Escherichia coli EtpA mediates adhesion between flagella and host cells. Nature 457:594–598[PubMed] [CrossRef]
    [Google Scholar]
  59. Saini S., Slauch J. M., Aldridge P. D., Rao C. V. ( 2010). Role of cross talk in regulating the dynamic expression of the flagellar Salmonella pathogenicity island 1 and type 1 fimbrial genes. J Bacteriol 192:5767–5777 [View Article][PubMed]
    [Google Scholar]
  60. Saldaña Z., Erdem A. L., Schüller S., Okeke I. N., Lucas M., Sivananthan A., Phillips A. D., Kaper J. B., Puente J. L., Girón J. A. ( 2009). The Escherichia coli common pilus and the bundle-forming pilus act in concert during the formation of localized adherence by enteropathogenic E. coli . J Bacteriol 191:3451–3461 [View Article][PubMed]
    [Google Scholar]
  61. Sambrook J., Russell D. W. ( 2001). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  62. Silverman M., Simon M. ( 1974). Characterization of Escherichia coli flagellar mutants that are insensitive to catabolite repression. J Bacteriol 120:1196–1203[PubMed]
    [Google Scholar]
  63. Simm R., Morr M., Kader A., Nimtz M., Römling U. ( 2004). GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. Mol Microbiol 53:1123–1134 [View Article][PubMed]
    [Google Scholar]
  64. Simms A. N., Mobley H. L. ( 2008a). Multiple genes repress motility in uropathogenic Escherichia coli constitutively expressing type 1 fimbriae. J Bacteriol 190:3747–3756 [View Article][PubMed]
    [Google Scholar]
  65. Simms A. N., Mobley H. L. ( 2008b). PapX, a P fimbrial operon-encoded inhibitor of motility in uropathogenic Escherichia coli . Infect Immun 76:4833–4841 [View Article][PubMed]
    [Google Scholar]
  66. Simon R., Priefer U., Pühler A. ( 1983). A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Biotechnology 1:784–791 [View Article]
    [Google Scholar]
  67. Sjöström A. E., Balsalobre C., Emödy L., Westerlund-Wikström B., Hacker J., Uhlin B. E. ( 2009a). The SfaXII protein from newborn meningitis E. coli is involved in regulation of motility and type 1 fimbriae expression. Microb Pathog 46:243–252 [View Article][PubMed]
    [Google Scholar]
  68. Sjöström A. E., Sondén B., Müller C., Rydström A., Dobrindt U., Wai S. N., Uhlin B. E. ( 2009b). Analysis of the sfaXII locus in the Escherichia coli meningitis isolate IHE3034 reveals two novel regulatory genes within the promoter-distal region of the main S fimbrial operon. Microb Pathog 46:150–158 [View Article][PubMed]
    [Google Scholar]
  69. Soutourina O. A., Bertin P. N. ( 2003). Regulation cascade of flagellar expression in Gram-negative bacteria. FEMS Microbiol Rev 27:505–523 [View Article][PubMed]
    [Google Scholar]
  70. Soutourina O., Kolb A., Krin E., Laurent-Winter C., Rimsky S., Danchin A., Bertin P. ( 1999). Multiple control of flagellum biosynthesis in Escherichia coli: role of H-NS protein and the cyclic AMP-catabolite activator protein complex in transcription of the flhDC master operon. J Bacteriol 181:7500–7508[PubMed]
    [Google Scholar]
  71. Soutourina O. A., Krin E., Laurent-Winter C., Hommais F., Danchin A., Bertin P. N. ( 2002). Regulation of bacterial motility in response to low pH in Escherichia coli: the role of H-NS protein. Microbiology 148:1543–1551[PubMed]
    [Google Scholar]
  72. Sperandio V., Torres A. G., Girón J. A., Kaper J. B. ( 2001). Quorum sensing is a global regulatory mechanism in enterohemorrhagic Escherichia coli O157 : H7. J Bacteriol 183:5187–5197 [View Article][PubMed]
    [Google Scholar]
  73. Sperandio V., Torres A. G., Kaper J. B. ( 2002). Quorum sensing Escherichia coli regulators B and C (QseBC): a novel two-component regulatory system involved in the regulation of flagella and motility by quorum sensing in E. coli . Mol Microbiol 43:809–821 [View Article][PubMed]
    [Google Scholar]
  74. Studier F. W., Moffatt B. A. ( 1986). Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189:113–130[PubMed] [CrossRef]
    [Google Scholar]
  75. Tobe T., Nakanishi N., Sugimoto N. ( 2011). Activation of motility by sensing short-chain fatty acids via two steps in a flagellar gene regulatory cascade in enterohemorrhagic Escherichia coli . Infect Immun 79:1016–1024 [View Article][PubMed]
    [Google Scholar]
  76. Warren J. W. ( 1996). Clinical presentation and epidemiology of urinary tract infections. Urinary Tract Infections: Molecular Pathogenesis and Clinical Management3–27 Mobley H. L. T., Warren J. W. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  77. Wei B. L., Brun-Zinkernagel A.-M., Simecka J. W., Prüß B. M., Babitzke P., Romeo T. ( 2001). Positive regulation of motility and flhDC expression by the RNA-binding protein CsrA of Escherichia coli . Mol Microbiol 40:245–256 [View Article][PubMed]
    [Google Scholar]
  78. Westerlund-Wikström B., Tanskanen J., Virkola R., Hacker J., Lindberg M., Skurnik M., Korhonen T. K. ( 1997). Functional expression of adhesive peptides as fusions to Escherichia coli flagellin. Protein Eng 10:1319–1326[PubMed] [CrossRef]
    [Google Scholar]
  79. Wright K. J., Seed P. C., Hultgren S. J. ( 2005). Uropathogenic Escherichia coli flagella aid in efficient urinary tract colonization. Infect Immun 73:7657–7668 [View Article][PubMed]
    [Google Scholar]
  80. Zhao K., Liu M., Burgess R. R. ( 2007). Adaptation in bacterial flagellar and motility systems: from regulon members to ‘foraging’-like behavior in E. coli . Nucleic Acids Res 35:4441–4452 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.056499-0
Loading
/content/journal/micro/10.1099/mic.0.056499-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error