1887
Preview this article:
Zoom in
Zoomout

Special issue: – from Basic Biology to Biotechnology, Page 1 of 1

| /docserver/preview/fulltext/micro/158/1/1_mic056424-1.gif

There is no abstract available for this article.
Use the preview function to the left.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.056424-0
2012-01-01
2020-08-04
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/1/1.html?itemId=/content/journal/micro/10.1099/mic.0.056424-0&mimeType=html&fmt=ahah

References

  1. Baker S. E., Perrone G., Richardson N. M., Gallo A., Kubicek C. P.. ( 2012;). Phylogenetic analysis and evolution of polyketide synthase-encoding genes in Trichoderma. . Microbiology158:147–154[CrossRef]
    [Google Scholar]
  2. Brotman Y., Lisec J., Méret M., Chet I., Willmitzer L., Viterbo A.. ( 2012;). Transcript and metabolite analysis of the Trichoderma-induced systemic resistance response to Pseudomonas syringae in Arabidopsis thaliana. . Microbiology158:139–146[CrossRef]
    [Google Scholar]
  3. Carreras-Villaseñor N., Sánchez-Arreguín A., Herrera-Estrella A. H.. ( 2012;). Trichoderma: sensing the environment for survival and dispersal. Microbiology158:3–16[CrossRef]
    [Google Scholar]
  4. Friedl M. A., Druzhinina I. S.. ( 2012;). Taxon-specific metagenomics of Trichoderma reveals a narrow community of opportunistic species that regulate each other’s development. Microbiology158:69–83[CrossRef]
    [Google Scholar]
  5. Gruber S., Seidl-Seiboth V.. ( 2012;). Self versus non-self: fungal cell wall degradation in Trichoderma. . Microbiology158:9–26[CrossRef]
    [Google Scholar]
  6. Hermosa R., Viterbo A., Chet I., Monte E.. ( 2012;). Plant-beneficial effects of Trichoderma and of its genes. Microbiology158:17–25[CrossRef]
    [Google Scholar]
  7. Kubicek C. P., Herrera-Estrella A., Seidl-Seiboth V., Martinez D. A., Druzhinina I. S., Thon M., Zeilinger S., Casas-Flores S., Horwitz B. A.. & other authors ( 2011;). Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. . Genome Biol12:R40[CrossRef]
    [Google Scholar]
  8. Matarese F., Sarrocco S., Gruber S., Seidl-Seiboth V., Vannacci G.. ( 2012;). Biocontrol of Fusarium head blight: interactions between Trichoderma and mycotoxigenic Fusarium. . Microbiology158:98–106[CrossRef]
    [Google Scholar]
  9. Mukherjee P. K., Horwitz B. A., Kenerley C. M.. ( 2012a;). Secondary metabolism in Trichoderma – a genomic perspective. Microbiology158:35–45[CrossRef]
    [Google Scholar]
  10. Mukherjee P. K., Buensanteai N., Moran-Diez M. E., Druzhinina I. S., Kenerley C. M.. ( 2012b;). Functional analysis of non-ribosomal peptide synthetases (NRPSs) in Trichoderma virens reveals a polyketide synthase (PKS)/NRPS hybrid enzyme involved in the induced systemic resistance response in maize. Microbiology158:155–165[CrossRef]
    [Google Scholar]
  11. Omann M. R., Lehner S., Escobar Rodriguez C., Brunner K., Zeilinger S.. ( 2012;). The seven-transmembrane receptor Gpr1 governs processes relevant for the antagonistic interaction of Trichoderma atroviride with its host. Microbiology158:107–118[CrossRef]
    [Google Scholar]
  12. Peterson R., Nevalainen H.. ( 2012;). Trichoderma reesei RUT-C30 – thirty years of strain improvement. Microbiology158:58–68[CrossRef]
    [Google Scholar]
  13. Rubio M. B., Domínguez S., Monte E., Hermosa R.. ( 2012;). Comparative study of Trichoderma gene expression in interactions with tomato plants using high-density oligonucleotide microarrays. Microbiology158:119–128[CrossRef]
    [Google Scholar]
  14. Ryder L. S., Harris B. D., Soanes D. M., Kershaw M. J., Talbot N. J., Thornton C. R.. ( 2012;). Saprotrophic competitiveness and biocontrol fitness of a genetically modified strain of the plant-growth-promoting fungus Trichoderma hamatum GD12. Microbiology158:84–97[CrossRef]
    [Google Scholar]
  15. Saloheimo M., Pakula T. M.. ( 2012;). The cargo and the transport system: secreted proteins and protein secretion in Trichoderma reesei (Hypocrea jecorina). Microbiology158:46–57[CrossRef]
    [Google Scholar]
  16. Samolski I., Rincón A. M., Pinzón L. M., Viterbo A., Monte E.. ( 2012;). The qid74 gene from Trichoderma harzianum has a role in root architecture and plant biofertilization. Microbiology158:129–138[CrossRef]
    [Google Scholar]
  17. Shi M., Chen L., Wang X.-W., Zhang T., Zhao P.-B., Song X.-Y., Sun C.-Y., Chen X.-L., Zhou B.-C., Zhang Y.-Z.. ( 2012;). Antimicrobial peptaibols from Trichoderma pseudokoningii induce programmed cell death in plant fungal pathogens. Microbiology158:166–175[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.056424-0
Loading

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error