1887

Abstract

The DedA family is a highly conserved, ancient family of membrane proteins with representatives in most sequenced genomes. A characteristic of prokaryotic DedA family genes is extensive gene duplication, with most bacterial genomes carrying two or more homologues. The genome carries eight DedA genes, each individually nonessential. We previously described an mutant (BC202; Δ : : , Δ : : ) with in-frame deletions of two DedA genes encoding proteins with 61 % amino acid identity. BC202 fails to complete cell division or grow at elevated temperatures. Here, we report that restoration of normal growth and cell division of BC202 is possible by overexpression of a subset of the eight DedA genes (, , ) but not others (, , and ), suggesting the existence of two functional groups within the family. We have constructed individual strains in which all eight DedA genes are deleted in a nonpolar manner, and growth is supported by a single DedA family gene under control of an inducible promoter. Strain BAL801 (with growth supported by cloned ) and BAL802 (with growth supported by cloned ) exhibit slow growth that is absolutely dependent upon the presence of the arabinose inducer. Growth in the presence of glucose results in cell death. These results indicate that while not individually essential, the DedA family proteins are collectively essential. These observations suggest important functions for the DedA protein family.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.056325-0
2012-05-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/5/1162.html?itemId=/content/journal/micro/10.1099/mic.0.056325-0&mimeType=html&fmt=ahah

References

  1. Arai M. , Sobou M. , Vilchéze C. , Baughn A. , Hashizume H. , Pruksakorn P. , Ishida S. , Matsumoto M. , Jacobs W. R. Jr , Kobayashi M. . ( 2008; ). Halicyclamine A, a marine spongean alkaloid as a lead for anti-tuberculosis agent. . Bioorg Med Chem 16:, 6732–6736. [CrossRef] [PubMed]
    [Google Scholar]
  2. Arai M. , Liu L. , Fujimoto T. , Setiawan A. , Kobayashi M. . ( 2011; ). DedA protein relates to action-mechanism of halicyclamine A, a marine spongean macrocyclic alkaloid, as an anti-dormant mycobacterial substance. . Mar Drugs 9:, 984–993. [CrossRef] [PubMed]
    [Google Scholar]
  3. Baba T. , Ara T. , Hasegawa M. , Takai Y. , Okumura Y. , Baba M. , Datsenko K. A. , Tomita M. , Wanner B. L. , Mori H. . ( 2006; ). Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. . Mol Syst Biol 2:, 2006.0008. [CrossRef] [PubMed]
    [Google Scholar]
  4. Blattner F. R. , Plunkett G. III , Bloch C. A. , Perna N. T. , Burland V. , Riley M. , Collado-Vides J. , Glasner J. D. , Rode C. K. . & other authors ( 1997; ). The complete genome sequence of Escherichia coli K-12. . Science 277:, 1453–1462. [CrossRef] [PubMed]
    [Google Scholar]
  5. Bligh E. G. , Dyer W. J. . ( 1959; ). A rapid method of total lipid extraction and purification. . Can J Biochem Physiol 37:, 911–917. [CrossRef] [PubMed]
    [Google Scholar]
  6. Cherepanov P. P. , Wackernagel W. . ( 1995; ). Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. . Gene 158:, 9–14. [CrossRef] [PubMed]
    [Google Scholar]
  7. Datsenko K. A. , Wanner B. L. . ( 2000; ). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. . Proc Natl Acad Sci U S A 97:, 6640–6645. [CrossRef] [PubMed]
    [Google Scholar]
  8. Dilks K. , Rose R. W. , Hartmann E. , Pohlschröder M. . ( 2003; ). Prokaryotic utilization of the twin-arginine translocation pathway: a genomic survey. . J Bacteriol 185:, 1478–1483. [CrossRef] [PubMed]
    [Google Scholar]
  9. Doerrler W. T. . ( 2006; ). Lipid trafficking to the outer membrane of Gram-negative bacteria. . Mol Microbiol 60:, 542–552. [CrossRef] [PubMed]
    [Google Scholar]
  10. Doerrler W. T. , Gibbons H. S. , Raetz C. R. H. . ( 2004; ). MsbA-dependent translocation of lipids across the inner membrane of Escherichia coli . . J Biol Chem 279:, 45102–45109. [CrossRef] [PubMed]
    [Google Scholar]
  11. Elofsson A. , von Heijne G. . ( 2007; ). Membrane protein structure: prediction vs reality. . Annu Rev Biochem 76:, 125–140.[CrossRef]
    [Google Scholar]
  12. Fraser C. M. , Casjens S. , Huang W. M. , Sutton G. G. , Clayton R. , Lathigra R. , White O. , Ketchum K. A. , Dodson R. . & other authors ( 1997; ). Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi . . Nature 390:, 580–586. [CrossRef] [PubMed]
    [Google Scholar]
  13. Gama-Castro S. , Salgado H. , Peralta-Gil M. , Santos-Zavaleta A. , Muñiz-Rascado L. , Solano-Lira H. , Jimenez-Jacinto V. , Weiss V. , García-Sotelo J. S. . & other authors ( 2011; ). RegulonDB version 7.0: transcriptional regulation of Escherichia coli K-12 integrated within genetic sensory response units (Gensor Units). . Nucleic Acids Res 39: (Database issue), D98–D105. [CrossRef] [PubMed]
    [Google Scholar]
  14. Heidrich C. , Ursinus A. , Berger J. , Schwarz H. , Höltje J. V. . ( 2002; ). Effects of multiple deletions of murein hydrolases on viability, septum cleavage, and sensitivity to large toxic molecules in Escherichia coli . . J Bacteriol 184:, 6093–6099. [CrossRef] [PubMed]
    [Google Scholar]
  15. Hirsh J. , Schleif R. . ( 1977; ). The araC promoter: transcription, mapping and interaction with the araBAD promoter. . Cell 11:, 545–550. [CrossRef] [PubMed]
    [Google Scholar]
  16. Inoue H. , Nojima H. , Okayama H. . ( 1990; ). High efficiency transformation of Escherichia coli with plasmids. . Gene 96:, 23–28. [CrossRef] [PubMed]
    [Google Scholar]
  17. Ize B. , Stanley N. R. , Buchanan G. , Palmer T. . ( 2003; ). Role of the Escherichia coli Tat pathway in outer membrane integrity. . Mol Microbiol 48:, 1183–1193. [CrossRef] [PubMed]
    [Google Scholar]
  18. Jaspars M. , Pasupathy V. , Crews P. . ( 1994; ). A tetracyclic diamine alkaloid, halicyclamine A, from the marine sponge Haliclona sp.. J Org Chem 59:, 3253–3255. [CrossRef]
    [Google Scholar]
  19. Khafizov K. , Staritzbichler R. , Stamm M. , Forrest L. R. . ( 2010; ). A study of the evolution of inverted-topology repeats from LeuT-fold transporters using AlignMe. . Biochemistry 49:, 10702–10713. [CrossRef] [PubMed]
    [Google Scholar]
  20. Klabunde T. , Hessler G. . ( 2002; ). Drug design strategies for targeting G-protein-coupled receptors. . ChemBioChem 3:, 928–944. [CrossRef] [PubMed]
    [Google Scholar]
  21. Liang F. T. , Xu Q. , Sikdar R. , Xiao Y. , Cox J. S. , Doerrler W. T. . ( 2010; ). BB0250 of Borrelia burgdorferi is a conserved and essential inner membrane protein required for cell division. . J Bacteriol 192:, 6105–6115. [CrossRef] [PubMed]
    [Google Scholar]
  22. Miller J. H. . ( 1972; ). Experiments in Molecular Genetics. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  23. Rose P. W. , Beran B. , Bi C. , Bluhm W. F. , Dimitropoulos D. , Goodsell D. S. , Prlic A. , Quesada M. , Quinn G. B. . & other authors ( 2011; ). The RCSB Protein Data Bank: redesigned web site and web services. . Nucleic Acids Res 39: (Database issue), D392–D401. [CrossRef] [PubMed]
    [Google Scholar]
  24. Sayers E. W. , Barrett T. , Benson D. A. , Bolton E. , Bryant S. H. , Canese K. , Chetvernin V. , Church D. M. , Dicuccio M. . & other authors ( 2012; ). Database resources of the National Center for Biotechnology Information. . Nucleic Acids Res 40: (Database issue), D13–D25. [CrossRef] [PubMed]
    [Google Scholar]
  25. Sikdar R. , Doerrler W. T. . ( 2010; ). Inefficient Tat-dependent export of periplasmic amidases in an Escherichia coli strain with mutations in two DedA family genes. . J Bacteriol 192:, 807–818. [CrossRef] [PubMed]
    [Google Scholar]
  26. Silhavy T. J. , Berman M. L. , Enquist L. W. . ( 1984; ). Experiments with Gene Fusions. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  27. Stanley N. R. , Findlay K. , Berks B. C. , Palmer T. . ( 2001; ). Escherichia coli strains blocked in Tat-dependent protein export exhibit pleiotropic defects in the cell envelope. . J Bacteriol 183:, 139–144. [CrossRef] [PubMed]
    [Google Scholar]
  28. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011; ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  29. Thompkins K. , Chattopadhyay B. , Xiao Y. , Henk M. C. , Doerrler W. T. . ( 2008; ). Temperature sensitivity and cell division defects in an Escherichia coli strain with mutations in yghB and yqjA, encoding related and conserved inner membrane proteins. . J Bacteriol 190:, 4489–4500. [CrossRef] [PubMed]
    [Google Scholar]
  30. Yu D. , Ellis H. M. , Lee E. C. , Jenkins N. A. , Copeland N. G. , Court D. L. . ( 2000; ). An efficient recombination system for chromosome engineering in Escherichia coli . . Proc Natl Acad Sci U S A 97:, 5978–5983. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.056325-0
Loading
/content/journal/micro/10.1099/mic.0.056325-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error