Identification of C-terminal hydrophobic residues important for dimerization and all known functions of ParB of Free

Abstract

The ParB protein of is important for growth, cell division, nucleoid segregation and different types of motility. To further understand its function we have demonstrated a vital role of the hydrophobic residues in the C terminus of ParB. By modelling of the C-terminal domain (amino acids 242–290) the hydrophobic residues L282, V285 and I289 (but not L286) are engaged in leucine-zipper-like structure formation, whereas the charged residues R290 and Q266 are implicated in forming a salt bridge involved in protein stabilization. Five mutant alleles were constructed and their functionality was defined and . In agreement with model predictions, the substitution L286A had no effect on mutant protein activities. Two ParBs with single substitutions L282A or V285A and deletions of two or seven C-terminal amino acids were impaired in both dimerization and DNA binding and were not able to silence genes adjacent to , suggesting that dimerization through the C terminus is a prerequisite for spreading on DNA. The defect in dimerization also correlated with loss of ability to interact with partner protein ParA. Reverse genetics demonstrated that a mutant producing ParB lacking the two C-terminal amino acids as well as mutants producing ParB with single substitution L282A or V285A had defects similar to those of a null mutant. Thus so far all the properties of ParB seem to depend on dimerization.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.056234-0
2012-05-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/5/1183.html?itemId=/content/journal/micro/10.1099/mic.0.056234-0&mimeType=html&fmt=ahah

References

  1. Autret S., Errington J. ( 2003). A role for division-site-selection protein MinD in regulation of internucleoid jumping of Soj (ParA) protein in Bacillus subtilis . Mol Microbiol 47:159–169 [View Article][PubMed]
    [Google Scholar]
  2. Bartosik A. A., Lasocki K., Mierzejewska J., Thomas C. M., Jagura-Burdzy G. ( 2004). ParB of Pseudomonas aeruginosa: interactions with its partner ParA and its target parS and specific effects on bacterial growth. J Bacteriol 186:6983–6998 [View Article][PubMed]
    [Google Scholar]
  3. Bartosik A. A., Mierzejewska J., Thomas C. M., Jagura-Burdzy G. ( 2009). ParB deficiency in Pseudomonas aeruginosa destabilizes the partner protein ParA and affects a variety of physiological parameters. Microbiology 155:1080–1092 [View Article][PubMed]
    [Google Scholar]
  4. Bignell C. R., Haines A. S., Khare D., Thomas C. M. ( 1999). Effect of growth rate and incC mutation on symmetric plasmid distribution by the IncP-1 partitioning apparatus. Mol Microbiol 34:205–216 [View Article][PubMed]
    [Google Scholar]
  5. Bingle L. E., Macartney D. P., Fantozzi A., Manzoor S. E., Thomas C. M. ( 2005). Flexibility in repression and cooperativity by KorB of broad host range IncP-1 plasmid RK2. J Mol Biol 349:302–316 [View Article][PubMed]
    [Google Scholar]
  6. Bowman G. R., Comolli L. R., Zhu J., Eckart M., Koenig M., Downing K. H., Moerner W. E., Earnest T., Shapiro L. ( 2008). A polymeric protein anchors the chromosomal origin/ParB complex at a bacterial cell pole. Cell 134:945–955 [View Article][PubMed]
    [Google Scholar]
  7. Breier A. M., Grossman A. D. ( 2007). Whole-genome analysis of the chromosome partitioning and sporulation protein Spo0J (ParB) reveals spreading and origin-distal sites on the Bacillus subtilis chromosome. Mol Microbiol 64:703–718 [View Article][PubMed]
    [Google Scholar]
  8. Cervin M. A., Spiegelman G. B., Raether B., Ohlsen K., Perego M., Hoch J. A. ( 1998). A negative regulator linking chromosome segregation to developmental transcription in Bacillus subtilis . Mol Microbiol 29:85–95 [View Article][PubMed]
    [Google Scholar]
  9. Churchward G., Belin D., Nagamine Y. ( 1984). A pSC101-derived plasmid which shows no sequence homology to other commonly used cloning vectors. Gene 31:165–171 [View Article][PubMed]
    [Google Scholar]
  10. Delbrück H., Ziegelin G., Lanka E., Heinemann U. ( 2002). An Src homology 3-like domain is responsible for dimerization of the repressor protein KorB encoded by the promiscuous IncP plasmid RP4. J Biol Chem 277:4191–4198 [View Article][PubMed]
    [Google Scholar]
  11. Donovan C., Schwaiger A., Krämer R., Bramkamp M. ( 2010). Subcellular localization and characterization of the ParAB system from Corynebacterium glutamicum . J Bacteriol 192:3441–3451 [View Article][PubMed]
    [Google Scholar]
  12. Ebersbach G., Briegel A., Jensen G. J., Jacobs-Wagner C. ( 2008). A self-associating protein critical for chromosome attachment, division, and polar organization in Caulobacter . Cell 134:956–968 [View Article][PubMed]
    [Google Scholar]
  13. El-Sayed A. K., Hothersall J., Thomas C. M. ( 2001). Quorum-sensing-dependent regulation of biosynthesis of the polyketide antibiotic mupirocin in Pseudomonas fluorescens NCIMB 10586. Microbiology 147:2127–2139[PubMed]
    [Google Scholar]
  14. Figge R. M., Easter J. Jr, Gober J. W. ( 2003). Productive interaction between the chromosome partitioning proteins, ParA and ParB, is required for the progression of the cell cycle in Caulobacter crescentus . Mol Microbiol 47:1225–1237 [View Article][PubMed]
    [Google Scholar]
  15. Fogel M. A., Waldor M. K. ( 2006). A dynamic, mitotic-like mechanism for bacterial chromosome segregation. Genes Dev 20:3269–3282 [View Article][PubMed]
    [Google Scholar]
  16. Gerdes K., Møller-Jensen J., Jensen R. B. ( 2000). Plasmid and chromosome partitioning: surprises from phylogeny. Mol Microbiol 37:455–466 [View Article][PubMed]
    [Google Scholar]
  17. Glaser P., Sharpe M. E., Raether B., Perego M., Ohlsen K., Errington J. ( 1997). Dynamic, mitotic-like behavior of a bacterial protein required for accurate chromosome partitioning. Genes Dev 11:1160–1168 [View Article][PubMed]
    [Google Scholar]
  18. Godfrin-Estevenon A.-M., Pasta F., Lane D. ( 2002). The parAB gene products of Pseudomonas putida exhibit partition activity in both P. putida and Escherichia coli . Mol Microbiol 43:39–49 [View Article][PubMed]
    [Google Scholar]
  19. Gruber S., Errington J. ( 2009). Recruitment of condensin to replication origin regions by ParB/Spo0J promotes chromosome segregation in B. subtilis . Cell 137:685–696 [View Article][PubMed]
    [Google Scholar]
  20. Irani V. R., Rowe J. J. ( 1997). Enhancement of transformation in Pseudomonas aeruginosa PAO1 by Mg2+ and heat. Biotechniques 22:54–56[PubMed]
    [Google Scholar]
  21. Ireton K., Gunther N. W. IV, Grossman A. D. ( 1994). spo0J is required for normal chromosome segregation as well as the initiation of sporulation in Bacillus subtilis . J Bacteriol 176:5320–5329[PubMed]
    [Google Scholar]
  22. Jagura-Burdzy G., Ibbotson J. P., Thomas C. M. ( 1991). The korF region of broad-host-range plasmid RK2 encodes two polypeptides with transcriptional repressor activity. J Bacteriol 173:826–833
    [Google Scholar]
  23. Jagura-Burdzy G., Thomas C. M. ( 1995). Purification of KorA protein from broad host range plasmid RK2: definition of a hierarchy of KorA operators. J Mol Biol 253:39–50 [View Article][PubMed]
    [Google Scholar]
  24. Jakimowicz D., Chater K. F., Zakrzewska-Czerwínska J. ( 2002). The ParB protein of Streptomyces coelicolor A3(2) recognizes a cluster of parS sequences within the origin-proximal region of the linear chromosome. Mol Microbiol 45:1365–1377 [View Article][PubMed]
    [Google Scholar]
  25. Jakimowicz D., Mouz S., Zakrzewska-Czerwinska J., Chater K. F. ( 2006). Developmental control of a parAB promoter leads to formation of sporulation-associated ParB complexes in Streptomyces coelicolor . J Bacteriol 188:1710–1720 [View Article][PubMed]
    [Google Scholar]
  26. Jakimowicz D., Zydek P., Kois A., Zakrzewska-Czerwińska J., Chater K. F. ( 2007). Alignment of multiple chromosomes along helical ParA scaffolding in sporulating Streptomyces hyphae. Mol Microbiol 65:625–641 [View Article][PubMed]
    [Google Scholar]
  27. Kadoya R., Baek J. H., Sarker A., Chattoraj D. K. ( 2011). Participation of chromosome segregation protein ParAI of Vibrio cholerae in chromosome replication. J Bacteriol 193:1504–1514 [View Article][PubMed]
    [Google Scholar]
  28. Kahn M. R., Kolter R., Thomas C. M., Figurski D., Meyer R., Remaut E., Helinski D. R. ( 1979). Plasmid cloning vehicles derived from plasmids ColE1, F, R6K, and RK2. Methods Enzymol 68:268–280 [View Article][PubMed]
    [Google Scholar]
  29. Karimova G., Pidoux J., Ullmann A., Ladant D. ( 1998). A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc Natl Acad Sci U S A 95:5752–5756 [View Article][PubMed]
    [Google Scholar]
  30. Katoh K., Toh H. ( 2008). Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 9:286–298 [View Article][PubMed]
    [Google Scholar]
  31. Khare D., Ziegelin G., Lanka E., Heinemann U. ( 2004). Sequence-specific DNA binding determined by contacts outside the helix-turn-helix motif of the ParB homolog KorB. Nat Struct Mol Biol 11:656–663 [View Article][PubMed]
    [Google Scholar]
  32. Kim H.-J., Calcutt M. J., Schmidt F. J., Chater K. F. ( 2000). Partitioning of the linear chromosome during sporulation of Streptomyces coelicolor A3(2) involves an oriC-linked parAB locus. J Bacteriol 182:1313–1320 [View Article][PubMed]
    [Google Scholar]
  33. Kovach M. E., Elzer P. H., Hill D. S., Robertson G. T., Farris M. A., Roop R. M. II, Peterson K. M. ( 1995). Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175–176 [View Article][PubMed]
    [Google Scholar]
  34. Kusiak M., Gapczynska A., Plochocka D., Thomas C. M., Jagura-Burdzy G. ( 2011). Binding and spreading of ParB on DNA determine its biological function in Pseudomonas aeruginosa . J Bacteriol 193:3342–3355 [View Article][PubMed]
    [Google Scholar]
  35. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A. & other authors ( 2007). clustal w and clustal_x version 2.0. Bioinformatics 23:2947–2948 [View Article][PubMed]
    [Google Scholar]
  36. Lasocki K., Bartosik A. A., Mierzejewska J., Thomas C. M., Jagura-Burdzy G. ( 2007). Deletion of the parA (soj) homologue in Pseudomonas aeruginosa causes ParB instability and affects growth rate, chromosome segregation, and motility. J Bacteriol 189:5762–5772 [View Article][PubMed]
    [Google Scholar]
  37. Lee P. S., Grossman A. D. ( 2006). The chromosome partitioning proteins Soj (ParA) and Spo0J (ParB) contribute to accurate chromosome partitioning, separation of replicated sister origins, and regulation of replication initiation in Bacillus subtilis . Mol Microbiol 60:853–869 [View Article][PubMed]
    [Google Scholar]
  38. Lee P. S., Lin D. C.-H., Moriya S., Grossman A. D. ( 2003). Effects of the chromosome partitioning protein Spo0J (ParB) on oriC positioning and replication initiation in Bacillus subtilis . J Bacteriol 185:1326–1337 [View Article][PubMed]
    [Google Scholar]
  39. Leonard T. A., Butler P. J., Löwe J. ( 2004). Structural analysis of the chromosome segregation protein Spo0J from Thermus thermophilus . Mol Microbiol 53:419–432 [View Article][PubMed]
    [Google Scholar]
  40. Lewis R. A., Bignell C. R., Zeng W., Jones A. C., Thomas C. M. ( 2002). Chromosome loss from par mutants of Pseudomonas putida depends on growth medium and phase of growth. Microbiology 148:537–548[PubMed]
    [Google Scholar]
  41. Lin D. C.-H., Grossman A. D. ( 1998). Identification and characterization of a bacterial chromosome partitioning site. Cell 92:675–685 [View Article][PubMed]
    [Google Scholar]
  42. Marston A. L., Errington J. ( 1999). Dynamic movement of the ParA-like Soj protein of B. subtilis and its dual role in nucleoid organization and developmental regulation. Mol Cell 4:673–682 [View Article][PubMed]
    [Google Scholar]
  43. Mohl D. A., Gober J. W. ( 1997). Cell cycle-dependent polar localization of chromosome partitioning proteins in Caulobacter crescentus . Cell 88:675–684 [View Article][PubMed]
    [Google Scholar]
  44. Mohl D. A., Easter J. Jr, Gober J. W. ( 2001). The chromosome partitioning protein, ParB, is required for cytokinesis in Caulobacter crescentus . Mol Microbiol 42:741–755 [View Article][PubMed]
    [Google Scholar]
  45. Mullis K., Faloona F., Scharf S., Saiki R., Horn G., Erlich H. ( 1986). Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol 51:263–273 [View Article][PubMed]
    [Google Scholar]
  46. Murray H., Errington J. ( 2008). Dynamic control of the DNA replication initiation protein DnaA by Soj/ParA. Cell 135:74–84 [View Article][PubMed]
    [Google Scholar]
  47. Notredame C., Higgins D. G., Heringa J. ( 2000). T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205–217 [View Article][PubMed]
    [Google Scholar]
  48. Ogura Y., Ogasawara N., Harry E. J., Moriya S. ( 2003). Increasing the ratio of Soj to Spo0J promotes replication initiation in Bacillus subtilis . J Bacteriol 185:6316–6324 [View Article][PubMed]
    [Google Scholar]
  49. Ptacin J. L., Lee S. F., Garner E. C., Toro E., Eckart M., Comolli L. R., Moerner W. E., Shapiro L. ( 2010). A spindle-like apparatus guides bacterial chromosome segregation. Nat Cell Biol 12:791–798 [View Article][PubMed]
    [Google Scholar]
  50. Quisel J. D., Grossman A. D. ( 2000). Control of sporulation gene expression in Bacillus subtilis by the chromosome partitioning proteins Soj (ParA) and Spo0J (ParB). J Bacteriol 182:3446–3451 [View Article][PubMed]
    [Google Scholar]
  51. Quisel J. D., Lin D. C., Grossman A. D. ( 1999). Control of development by altered localization of a transcription factor in B. subtilis . Mol Cell 4:665–672 [View Article][PubMed]
    [Google Scholar]
  52. Rashid M. H., Kornberg A. ( 2000). Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa . Proc Natl Acad Sci U S A 97:4885–4890 [View Article][PubMed]
    [Google Scholar]
  53. Real G., Autret S., Harry E. J., Errington J., Henriques A. O. ( 2005). Cell division protein DivIB influences the Spo0J/Soj system of chromosome segregation in Bacillus subtilis . Mol Microbiol 55:349–367 [View Article][PubMed]
    [Google Scholar]
  54. Rodionov O., Yarmolinsky M. ( 2004). Plasmid partitioning and the spreading of P1 partition protein ParB. Mol Microbiol 52:1215–1223 [View Article][PubMed]
    [Google Scholar]
  55. Rodionov O., Lobocka M., Yarmolinsky M. ( 1999). Silencing of genes flanking the P1 plasmid centromere. Science 283:546–549 [View Article][PubMed]
    [Google Scholar]
  56. Saint-Dic D., Frushour B. P., Kehrl J. H., Kahng L. S. ( 2006). A parA homolog selectively influences positioning of the large chromosome origin in Vibrio cholerae . J Bacteriol 188:5626–5631 [View Article][PubMed]
    [Google Scholar]
  57. Sambrook J., Fritsch E. F., Maniatis T. ( 1989). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  58. Schofield W. B., Lim H. Ch., Jacobs-Wagner C. ( 2010). Cell cycle coordination and regulation of bacterial chromosome segregation dynamics by polarly localized proteins. EMBO J 29:3068–3081 [View Article][PubMed]
    [Google Scholar]
  59. Scholefield G., Whiting R., Errington J., Murray H. ( 2011). Spo0J regulates the oligomeric state of Soj to trigger its switch from an activator to an inhibitor of DNA replication initiation. Mol Microbiol 79:1089–1100 [View Article][PubMed]
    [Google Scholar]
  60. Schumacher M. A., Mansoor A., Funnell B. E. ( 2007). Structure of a four-way bridged ParB-DNA complex provides insight into P1 segrosome assembly. J Biol Chem 282:10456–10464 [View Article][PubMed]
    [Google Scholar]
  61. Schumacher M. A., Piro K. M., Xu W. ( 2010). Insight into F plasmid DNA segregation revealed by structures of SopB and SopB-DNA complexes. Nucleic Acids Res 38:4514–4526 [View Article][PubMed]
    [Google Scholar]
  62. Sharpe M. E., Errington J. ( 1996). The Bacillus subtilis soj-spo0J locus is required for a centromere-like function involved in prespore chromosome partitioning. Mol Microbiol 21:501–509 [View Article][PubMed]
    [Google Scholar]
  63. Simon R., O’Connell M., Labes M., Pühler A. ( 1986). Plasmid vectors for the genetic analysis and manipulation of rhizobia and other Gram-negative bacteria. Methods Enzymol 118:640–659 [View Article][PubMed]
    [Google Scholar]
  64. Sullivan N. L., Marquis K. A., Rudner D. Z. ( 2009). Recruitment of SMC by ParB–parS organizes the origin region and promotes efficient chromosome segregation. Cell 137:697–707 [View Article][PubMed]
    [Google Scholar]
  65. Thanbichler M., Shapiro L. ( 2006). MipZ, a spatial regulator coordinating chromosome segregation with cell division in Caulobacter . Cell 126:147–162 [View Article][PubMed]
    [Google Scholar]
  66. Toro E., Hong S.-H., McAdams H. H., Shapiro L. ( 2008). Caulobacter requires a dedicated mechanism to initiate chromosome segregation. Proc Natl Acad Sci U S A 105:15435–15440 [View Article][PubMed]
    [Google Scholar]
  67. Viollier P. H., Thanbichler M., McGrath P. T., West L., Meewan M., McAdams H. H., Shapiro L. ( 2004). Rapid and sequential movement of individual chromosomal loci to specific subcellular locations during bacterial DNA replication. Proc Natl Acad Sci U S A 101:9257–9262 [View Article][PubMed]
    [Google Scholar]
  68. Webb C. D., Teleman A., Gordon S., Straight A., Belmont A., Lin D. C.-H., Grossman A. D., Wright A., Losick R. ( 1997). Bipolar localization of the replication origin regions of chromosomes in vegetative and sporulating cells of B. subtilis . Cell 88:667–674 [View Article][PubMed]
    [Google Scholar]
  69. Williams D. R., Thomas C. M. ( 1992). Active partitioning of bacterial plasmids. J Gen Microbiol 138:1–16[PubMed] [CrossRef]
    [Google Scholar]
  70. Yamaichi Y., Niki H. ( 2000). Active segregation by the Bacillus subtilis partitioning system in Escherichia coli . Proc Natl Acad Sci U S A 97:14656–14661 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.056234-0
Loading
/content/journal/micro/10.1099/mic.0.056234-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed