1887

Abstract

The ParB protein of is important for growth, cell division, nucleoid segregation and different types of motility. To further understand its function we have demonstrated a vital role of the hydrophobic residues in the C terminus of ParB. By modelling of the C-terminal domain (amino acids 242–290) the hydrophobic residues L282, V285 and I289 (but not L286) are engaged in leucine-zipper-like structure formation, whereas the charged residues R290 and Q266 are implicated in forming a salt bridge involved in protein stabilization. Five mutant alleles were constructed and their functionality was defined and . In agreement with model predictions, the substitution L286A had no effect on mutant protein activities. Two ParBs with single substitutions L282A or V285A and deletions of two or seven C-terminal amino acids were impaired in both dimerization and DNA binding and were not able to silence genes adjacent to , suggesting that dimerization through the C terminus is a prerequisite for spreading on DNA. The defect in dimerization also correlated with loss of ability to interact with partner protein ParA. Reverse genetics demonstrated that a mutant producing ParB lacking the two C-terminal amino acids as well as mutants producing ParB with single substitution L282A or V285A had defects similar to those of a null mutant. Thus so far all the properties of ParB seem to depend on dimerization.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.056234-0
2012-05-01
2020-10-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/5/1183.html?itemId=/content/journal/micro/10.1099/mic.0.056234-0&mimeType=html&fmt=ahah

References

  1. Autret S., Errington J.. ( 2003;). A role for division-site-selection protein MinD in regulation of internucleoid jumping of Soj (ParA) protein in Bacillus subtilis . Mol Microbiol47:159–169 [CrossRef][PubMed]
    [Google Scholar]
  2. Bartosik A. A., Lasocki K., Mierzejewska J., Thomas C. M., Jagura-Burdzy G.. ( 2004;). ParB of Pseudomonas aeruginosa: interactions with its partner ParA and its target parS and specific effects on bacterial growth. J Bacteriol186:6983–6998 [CrossRef][PubMed]
    [Google Scholar]
  3. Bartosik A. A., Mierzejewska J., Thomas C. M., Jagura-Burdzy G.. ( 2009;). ParB deficiency in Pseudomonas aeruginosa destabilizes the partner protein ParA and affects a variety of physiological parameters. Microbiology155:1080–1092 [CrossRef][PubMed]
    [Google Scholar]
  4. Bignell C. R., Haines A. S., Khare D., Thomas C. M.. ( 1999;). Effect of growth rate and incC mutation on symmetric plasmid distribution by the IncP-1 partitioning apparatus. Mol Microbiol34:205–216 [CrossRef][PubMed]
    [Google Scholar]
  5. Bingle L. E., Macartney D. P., Fantozzi A., Manzoor S. E., Thomas C. M.. ( 2005;). Flexibility in repression and cooperativity by KorB of broad host range IncP-1 plasmid RK2. J Mol Biol349:302–316 [CrossRef][PubMed]
    [Google Scholar]
  6. Bowman G. R., Comolli L. R., Zhu J., Eckart M., Koenig M., Downing K. H., Moerner W. E., Earnest T., Shapiro L.. ( 2008;). A polymeric protein anchors the chromosomal origin/ParB complex at a bacterial cell pole. Cell134:945–955 [CrossRef][PubMed]
    [Google Scholar]
  7. Breier A. M., Grossman A. D.. ( 2007;). Whole-genome analysis of the chromosome partitioning and sporulation protein Spo0J (ParB) reveals spreading and origin-distal sites on the Bacillus subtilis chromosome. Mol Microbiol64:703–718 [CrossRef][PubMed]
    [Google Scholar]
  8. Cervin M. A., Spiegelman G. B., Raether B., Ohlsen K., Perego M., Hoch J. A.. ( 1998;). A negative regulator linking chromosome segregation to developmental transcription in Bacillus subtilis . Mol Microbiol29:85–95 [CrossRef][PubMed]
    [Google Scholar]
  9. Churchward G., Belin D., Nagamine Y.. ( 1984;). A pSC101-derived plasmid which shows no sequence homology to other commonly used cloning vectors. Gene31:165–171 [CrossRef][PubMed]
    [Google Scholar]
  10. Delbrück H., Ziegelin G., Lanka E., Heinemann U.. ( 2002;). An Src homology 3-like domain is responsible for dimerization of the repressor protein KorB encoded by the promiscuous IncP plasmid RP4. J Biol Chem277:4191–4198 [CrossRef][PubMed]
    [Google Scholar]
  11. Donovan C., Schwaiger A., Krämer R., Bramkamp M.. ( 2010;). Subcellular localization and characterization of the ParAB system from Corynebacterium glutamicum . J Bacteriol192:3441–3451 [CrossRef][PubMed]
    [Google Scholar]
  12. Ebersbach G., Briegel A., Jensen G. J., Jacobs-Wagner C.. ( 2008;). A self-associating protein critical for chromosome attachment, division, and polar organization in Caulobacter . Cell134:956–968 [CrossRef][PubMed]
    [Google Scholar]
  13. El-Sayed A. K., Hothersall J., Thomas C. M.. ( 2001;). Quorum-sensing-dependent regulation of biosynthesis of the polyketide antibiotic mupirocin in Pseudomonas fluorescens NCIMB 10586. Microbiology147:2127–2139[PubMed]
    [Google Scholar]
  14. Figge R. M., Easter J. Jr, Gober J. W.. ( 2003;). Productive interaction between the chromosome partitioning proteins, ParA and ParB, is required for the progression of the cell cycle in Caulobacter crescentus . Mol Microbiol47:1225–1237 [CrossRef][PubMed]
    [Google Scholar]
  15. Fogel M. A., Waldor M. K.. ( 2006;). A dynamic, mitotic-like mechanism for bacterial chromosome segregation. Genes Dev20:3269–3282 [CrossRef][PubMed]
    [Google Scholar]
  16. Gerdes K., Møller-Jensen J., Jensen R. B.. ( 2000;). Plasmid and chromosome partitioning: surprises from phylogeny. Mol Microbiol37:455–466 [CrossRef][PubMed]
    [Google Scholar]
  17. Glaser P., Sharpe M. E., Raether B., Perego M., Ohlsen K., Errington J.. ( 1997;). Dynamic, mitotic-like behavior of a bacterial protein required for accurate chromosome partitioning. Genes Dev11:1160–1168 [CrossRef][PubMed]
    [Google Scholar]
  18. Godfrin-Estevenon A.-M., Pasta F., Lane D.. ( 2002;). The parAB gene products of Pseudomonas putida exhibit partition activity in both P. putida and Escherichia coli . Mol Microbiol43:39–49 [CrossRef][PubMed]
    [Google Scholar]
  19. Gruber S., Errington J.. ( 2009;). Recruitment of condensin to replication origin regions by ParB/Spo0J promotes chromosome segregation in B. subtilis . Cell137:685–696 [CrossRef][PubMed]
    [Google Scholar]
  20. Irani V. R., Rowe J. J.. ( 1997;). Enhancement of transformation in Pseudomonas aeruginosa PAO1 by Mg2+ and heat. Biotechniques22:54–56[PubMed]
    [Google Scholar]
  21. Ireton K., Gunther N. W. IV, Grossman A. D.. ( 1994;). spo0J is required for normal chromosome segregation as well as the initiation of sporulation in Bacillus subtilis . J Bacteriol176:5320–5329[PubMed]
    [Google Scholar]
  22. Jagura-Burdzy G., Ibbotson J. P., Thomas C. M.. ( 1991;). The korF region of broad-host-range plasmid RK2 encodes two polypeptides with transcriptional repressor activity. J Bacteriol173:826–833
    [Google Scholar]
  23. Jagura-Burdzy G., Thomas C. M.. ( 1995;). Purification of KorA protein from broad host range plasmid RK2: definition of a hierarchy of KorA operators. J Mol Biol253:39–50 [CrossRef][PubMed]
    [Google Scholar]
  24. Jakimowicz D., Chater K. F., Zakrzewska-Czerwínska J.. ( 2002;). The ParB protein of Streptomyces coelicolor A3(2) recognizes a cluster of parS sequences within the origin-proximal region of the linear chromosome. Mol Microbiol45:1365–1377 [CrossRef][PubMed]
    [Google Scholar]
  25. Jakimowicz D., Mouz S., Zakrzewska-Czerwinska J., Chater K. F.. ( 2006;). Developmental control of a parAB promoter leads to formation of sporulation-associated ParB complexes in Streptomyces coelicolor . J Bacteriol188:1710–1720 [CrossRef][PubMed]
    [Google Scholar]
  26. Jakimowicz D., Zydek P., Kois A., Zakrzewska-Czerwińska J., Chater K. F.. ( 2007;). Alignment of multiple chromosomes along helical ParA scaffolding in sporulating Streptomyces hyphae. Mol Microbiol65:625–641 [CrossRef][PubMed]
    [Google Scholar]
  27. Kadoya R., Baek J. H., Sarker A., Chattoraj D. K.. ( 2011;). Participation of chromosome segregation protein ParAI of Vibrio cholerae in chromosome replication. J Bacteriol193:1504–1514 [CrossRef][PubMed]
    [Google Scholar]
  28. Kahn M. R., Kolter R., Thomas C. M., Figurski D., Meyer R., Remaut E., Helinski D. R.. ( 1979;). Plasmid cloning vehicles derived from plasmids ColE1, F, R6K, and RK2. Methods Enzymol68:268–280 [CrossRef][PubMed]
    [Google Scholar]
  29. Karimova G., Pidoux J., Ullmann A., Ladant D.. ( 1998;). A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc Natl Acad Sci U S A95:5752–5756 [CrossRef][PubMed]
    [Google Scholar]
  30. Katoh K., Toh H.. ( 2008;). Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform9:286–298 [CrossRef][PubMed]
    [Google Scholar]
  31. Khare D., Ziegelin G., Lanka E., Heinemann U.. ( 2004;). Sequence-specific DNA binding determined by contacts outside the helix-turn-helix motif of the ParB homolog KorB. Nat Struct Mol Biol11:656–663 [CrossRef][PubMed]
    [Google Scholar]
  32. Kim H.-J., Calcutt M. J., Schmidt F. J., Chater K. F.. ( 2000;). Partitioning of the linear chromosome during sporulation of Streptomyces coelicolor A3(2) involves an oriC-linked parAB locus. J Bacteriol182:1313–1320 [CrossRef][PubMed]
    [Google Scholar]
  33. Kovach M. E., Elzer P. H., Hill D. S., Robertson G. T., Farris M. A., Roop R. M. II, Peterson K. M.. ( 1995;). Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene166:175–176 [CrossRef][PubMed]
    [Google Scholar]
  34. Kusiak M., Gapczynska A., Plochocka D., Thomas C. M., Jagura-Burdzy G.. ( 2011;). Binding and spreading of ParB on DNA determine its biological function in Pseudomonas aeruginosa . J Bacteriol193:3342–3355 [CrossRef][PubMed]
    [Google Scholar]
  35. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A.. & other authors ( 2007;). clustal w and clustal_x version 2.0. Bioinformatics23:2947–2948 [CrossRef][PubMed]
    [Google Scholar]
  36. Lasocki K., Bartosik A. A., Mierzejewska J., Thomas C. M., Jagura-Burdzy G.. ( 2007;). Deletion of the parA (soj) homologue in Pseudomonas aeruginosa causes ParB instability and affects growth rate, chromosome segregation, and motility. J Bacteriol189:5762–5772 [CrossRef][PubMed]
    [Google Scholar]
  37. Lee P. S., Grossman A. D.. ( 2006;). The chromosome partitioning proteins Soj (ParA) and Spo0J (ParB) contribute to accurate chromosome partitioning, separation of replicated sister origins, and regulation of replication initiation in Bacillus subtilis . Mol Microbiol60:853–869 [CrossRef][PubMed]
    [Google Scholar]
  38. Lee P. S., Lin D. C.-H., Moriya S., Grossman A. D.. ( 2003;). Effects of the chromosome partitioning protein Spo0J (ParB) on oriC positioning and replication initiation in Bacillus subtilis . J Bacteriol185:1326–1337 [CrossRef][PubMed]
    [Google Scholar]
  39. Leonard T. A., Butler P. J., Löwe J.. ( 2004;). Structural analysis of the chromosome segregation protein Spo0J from Thermus thermophilus . Mol Microbiol53:419–432 [CrossRef][PubMed]
    [Google Scholar]
  40. Lewis R. A., Bignell C. R., Zeng W., Jones A. C., Thomas C. M.. ( 2002;). Chromosome loss from par mutants of Pseudomonas putida depends on growth medium and phase of growth. Microbiology148:537–548[PubMed]
    [Google Scholar]
  41. Lin D. C.-H., Grossman A. D.. ( 1998;). Identification and characterization of a bacterial chromosome partitioning site. Cell92:675–685 [CrossRef][PubMed]
    [Google Scholar]
  42. Marston A. L., Errington J.. ( 1999;). Dynamic movement of the ParA-like Soj protein of B. subtilis and its dual role in nucleoid organization and developmental regulation. Mol Cell4:673–682 [CrossRef][PubMed]
    [Google Scholar]
  43. Mohl D. A., Gober J. W.. ( 1997;). Cell cycle-dependent polar localization of chromosome partitioning proteins in Caulobacter crescentus . Cell88:675–684 [CrossRef][PubMed]
    [Google Scholar]
  44. Mohl D. A., Easter J. Jr, Gober J. W.. ( 2001;). The chromosome partitioning protein, ParB, is required for cytokinesis in Caulobacter crescentus . Mol Microbiol42:741–755 [CrossRef][PubMed]
    [Google Scholar]
  45. Mullis K., Faloona F., Scharf S., Saiki R., Horn G., Erlich H.. ( 1986;). Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol51:263–273 [CrossRef][PubMed]
    [Google Scholar]
  46. Murray H., Errington J.. ( 2008;). Dynamic control of the DNA replication initiation protein DnaA by Soj/ParA. Cell135:74–84 [CrossRef][PubMed]
    [Google Scholar]
  47. Notredame C., Higgins D. G., Heringa J.. ( 2000;). T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol302:205–217 [CrossRef][PubMed]
    [Google Scholar]
  48. Ogura Y., Ogasawara N., Harry E. J., Moriya S.. ( 2003;). Increasing the ratio of Soj to Spo0J promotes replication initiation in Bacillus subtilis . J Bacteriol185:6316–6324 [CrossRef][PubMed]
    [Google Scholar]
  49. Ptacin J. L., Lee S. F., Garner E. C., Toro E., Eckart M., Comolli L. R., Moerner W. E., Shapiro L.. ( 2010;). A spindle-like apparatus guides bacterial chromosome segregation. Nat Cell Biol12:791–798 [CrossRef][PubMed]
    [Google Scholar]
  50. Quisel J. D., Grossman A. D.. ( 2000;). Control of sporulation gene expression in Bacillus subtilis by the chromosome partitioning proteins Soj (ParA) and Spo0J (ParB). J Bacteriol182:3446–3451 [CrossRef][PubMed]
    [Google Scholar]
  51. Quisel J. D., Lin D. C., Grossman A. D.. ( 1999;). Control of development by altered localization of a transcription factor in B. subtilis . Mol Cell4:665–672 [CrossRef][PubMed]
    [Google Scholar]
  52. Rashid M. H., Kornberg A.. ( 2000;). Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa . Proc Natl Acad Sci U S A97:4885–4890 [CrossRef][PubMed]
    [Google Scholar]
  53. Real G., Autret S., Harry E. J., Errington J., Henriques A. O.. ( 2005;). Cell division protein DivIB influences the Spo0J/Soj system of chromosome segregation in Bacillus subtilis . Mol Microbiol55:349–367 [CrossRef][PubMed]
    [Google Scholar]
  54. Rodionov O., Yarmolinsky M.. ( 2004;). Plasmid partitioning and the spreading of P1 partition protein ParB. Mol Microbiol52:1215–1223 [CrossRef][PubMed]
    [Google Scholar]
  55. Rodionov O., Lobocka M., Yarmolinsky M.. ( 1999;). Silencing of genes flanking the P1 plasmid centromere. Science283:546–549 [CrossRef][PubMed]
    [Google Scholar]
  56. Saint-Dic D., Frushour B. P., Kehrl J. H., Kahng L. S.. ( 2006;). A parA homolog selectively influences positioning of the large chromosome origin in Vibrio cholerae . J Bacteriol188:5626–5631 [CrossRef][PubMed]
    [Google Scholar]
  57. Sambrook J., Fritsch E. F., Maniatis T.. ( 1989;). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  58. Schofield W. B., Lim H. Ch., Jacobs-Wagner C.. ( 2010;). Cell cycle coordination and regulation of bacterial chromosome segregation dynamics by polarly localized proteins. EMBO J29:3068–3081 [CrossRef][PubMed]
    [Google Scholar]
  59. Scholefield G., Whiting R., Errington J., Murray H.. ( 2011;). Spo0J regulates the oligomeric state of Soj to trigger its switch from an activator to an inhibitor of DNA replication initiation. Mol Microbiol79:1089–1100 [CrossRef][PubMed]
    [Google Scholar]
  60. Schumacher M. A., Mansoor A., Funnell B. E.. ( 2007;). Structure of a four-way bridged ParB-DNA complex provides insight into P1 segrosome assembly. J Biol Chem282:10456–10464 [CrossRef][PubMed]
    [Google Scholar]
  61. Schumacher M. A., Piro K. M., Xu W.. ( 2010;). Insight into F plasmid DNA segregation revealed by structures of SopB and SopB-DNA complexes. Nucleic Acids Res38:4514–4526 [CrossRef][PubMed]
    [Google Scholar]
  62. Sharpe M. E., Errington J.. ( 1996;). The Bacillus subtilis soj-spo0J locus is required for a centromere-like function involved in prespore chromosome partitioning. Mol Microbiol21:501–509 [CrossRef][PubMed]
    [Google Scholar]
  63. Simon R., O’Connell M., Labes M., Pühler A.. ( 1986;). Plasmid vectors for the genetic analysis and manipulation of rhizobia and other Gram-negative bacteria. Methods Enzymol118:640–659 [CrossRef][PubMed]
    [Google Scholar]
  64. Sullivan N. L., Marquis K. A., Rudner D. Z.. ( 2009;). Recruitment of SMC by ParB–parS organizes the origin region and promotes efficient chromosome segregation. Cell137:697–707 [CrossRef][PubMed]
    [Google Scholar]
  65. Thanbichler M., Shapiro L.. ( 2006;). MipZ, a spatial regulator coordinating chromosome segregation with cell division in Caulobacter . Cell126:147–162 [CrossRef][PubMed]
    [Google Scholar]
  66. Toro E., Hong S.-H., McAdams H. H., Shapiro L.. ( 2008;). Caulobacter requires a dedicated mechanism to initiate chromosome segregation. Proc Natl Acad Sci U S A105:15435–15440 [CrossRef][PubMed]
    [Google Scholar]
  67. Viollier P. H., Thanbichler M., McGrath P. T., West L., Meewan M., McAdams H. H., Shapiro L.. ( 2004;). Rapid and sequential movement of individual chromosomal loci to specific subcellular locations during bacterial DNA replication. Proc Natl Acad Sci U S A101:9257–9262 [CrossRef][PubMed]
    [Google Scholar]
  68. Webb C. D., Teleman A., Gordon S., Straight A., Belmont A., Lin D. C.-H., Grossman A. D., Wright A., Losick R.. ( 1997;). Bipolar localization of the replication origin regions of chromosomes in vegetative and sporulating cells of B. subtilis . Cell88:667–674 [CrossRef][PubMed]
    [Google Scholar]
  69. Williams D. R., Thomas C. M.. ( 1992;). Active partitioning of bacterial plasmids. J Gen Microbiol138:1–16[PubMed][CrossRef]
    [Google Scholar]
  70. Yamaichi Y., Niki H.. ( 2000;). Active segregation by the Bacillus subtilis partitioning system in Escherichia coli . Proc Natl Acad Sci U S A97:14656–14661 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.056234-0
Loading
/content/journal/micro/10.1099/mic.0.056234-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error