1887

Abstract

In () , the final step of the complex sphingolipid biosynthetic pathway requires Ipt1p for synthesis of mannosyldiinositol phosphorylceramide [M(IP)C]. No fission yeast equivalent to Ipt1p has been found in the () genome, and the most abundant complex sphingolipid is mannosylinositol phosphorylceramide. To examine the effect of expressing () in , the gene was cloned into an inducible fission yeast integrative vector and expressed in wild-type . In the -expressing cells, M(IP)C was detected, indicating that Ipt1p functions in M(IP)C synthesis in . Expression of caused pleiotropic phenotypes, including aberrant morphology and mislocalization of ergosterols in the plasma membrane. Furthermore, growth of was severely impaired. We analysed the sphingolipid composition of -expressing cells following a prolonged lag phase, and found that M(IP)C was not synthesized, indicating that Ipt1p had been inactivated. GFP-tagged ScIpt1 localized primarily in the Golgi apparatus in wild-type . Over time, ScIpt1p was eventually transported to the vacuolar lumen through the multivesicular body pathway. These results indicate that M(IP)C is toxic to and that fission yeast possesses an unknown mechanism to effectively extrude toxic sphingolipids from cells.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.056184-0
2012-05-01
2020-01-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/5/1219.html?itemId=/content/journal/micro/10.1099/mic.0.056184-0&mimeType=html&fmt=ahah

References

  1. Alfa C., Fantes P., Hyams J., McLoed M., Marbrick E.. ( 1993;). Experiments with Fission Yeast: a Laboratory Course Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  2. Arellano M., Duran A., Perez P.. ( 1997;). Localisation of the Schizosaccharomyces pombe rho1p GTPase and its involvement in the organisation of the actin cytoskeleton. J Cell Sci110:2547–2555[PubMed]
    [Google Scholar]
  3. Babst M.. ( 2005;). A protein’s final ESCRT. Traffic6:2–9 [CrossRef][PubMed]
    [Google Scholar]
  4. Balasubramanian M. K., McCollum D., Chang L., Wong K. C., Naqvi N. I., He X., Sazer S., Gould K. L.. ( 1998;). Isolation and characterization of new fission yeast cytokinesis mutants. Genetics149:1265–1275[PubMed]
    [Google Scholar]
  5. Cowart L. A., Obeid L. M.. ( 2007;). Yeast sphingolipids: recent developments in understanding biosynthesis, regulation, and function. Biochim Biophys Acta1771:421–431[PubMed][CrossRef]
    [Google Scholar]
  6. Dickson R. C.. ( 1998;). Sphingolipid functions in Saccharomyces cerevisiae: comparison to mammals. Annu Rev Biochem67:27–48 [CrossRef][PubMed]
    [Google Scholar]
  7. Dickson R. C., Nagiec E. E., Wells G. B., Nagiec M. M., Lester R. L.. ( 1997;). Synthesis of mannose-(inositol-P)2-ceramide, the major sphingolipid in Saccharomyces cerevisiae, requires the IPT1 (YDR072c) gene. J Biol Chem272:29620–29625 [CrossRef][PubMed]
    [Google Scholar]
  8. Dickson R. C., Sumanasekera C., Lester R. L.. ( 2006;). Functions and metabolism of sphingolipids in Saccharomyces cerevisiae . Prog Lipid Res45:447–465 [CrossRef][PubMed]
    [Google Scholar]
  9. Edidin M.. ( 2003;). The state of lipid rafts: from model membranes to cells. Annu Rev Biophys Biomol Struct32:257–283 [CrossRef][PubMed]
    [Google Scholar]
  10. Feoktistova A., Magnelli P., Abeijon C., Perez P., Lester R. L., Dickson R. C., Gould K. L.. ( 2001;). Coordination between fission yeast glucan formation and growth requires a sphingolipase activity. Genetics158:1397–1411[PubMed]
    [Google Scholar]
  11. Gachet Y., Hyams J. S.. ( 2005;). Endocytosis in fission yeast is spatially associated with the actin cytoskeleton during polarised cell growth and cytokinesis. J Cell Sci118:4231–4242 [CrossRef][PubMed]
    [Google Scholar]
  12. Guan X. L., Souza C. M., Pichler H., Dewhurst G., Schaad O., Kajiwara K., Wakabayashi H., Ivanova T., Castillon G. A.. & other authors ( 2009;). Functional interactions between sphingolipids and sterols in biological membranes regulating cell physiology. Mol Biol Cell20:2083–2095 [CrossRef][PubMed]
    [Google Scholar]
  13. Harmouch N., Coulon J., Bonaly R.. ( 1995;). Identification of 24-methylene-24,25-dihydrolanosterol as a precursor of ergosterol in the yeasts Schizosaccharomyces pombe and Schizosaccharomyces octosporus . FEMS Microbiol Lett134:147–152 [CrossRef][PubMed]
    [Google Scholar]
  14. Holthuis J. C., Pomorski T., Raggers R. J., Sprong H., Van Meer G.. ( 2001;). The organizing potential of sphingolipids in intracellular membrane transport. Physiol Rev81:1689–1723[PubMed]
    [Google Scholar]
  15. Ikonen E.. ( 2001;). Roles of lipid rafts in membrane transport. Curr Opin Cell Biol13:470–477 [CrossRef][PubMed]
    [Google Scholar]
  16. Im Y. J., Idkowiak-Baldys J., Thevissen K., Cammue B. P., Takemoto J. Y.. ( 2003;). IPT1-independent sphingolipid biosynthesis and yeast inhibition by syringomycin E and plant defensin DmAMP1. FEMS Microbiol Lett223:199–203 [CrossRef][PubMed]
    [Google Scholar]
  17. Iwaki T., Onishi M., Ikeuchi M., Kita A., Sugiura R., Giga-Hama Y., Fukui Y., Takegawa K.. ( 2007;). Essential roles of class E Vps proteins for sorting into multivesicular bodies in Schizosaccharomyces pombe . Microbiology153:2753–2764 [CrossRef][PubMed]
    [Google Scholar]
  18. Keeney J. B., Boeke J. D.. ( 1994;). Efficient targeted integration at leu1-32 and ura4-294 in Schizosaccharomyces pombe . Genetics136:849–856[PubMed]
    [Google Scholar]
  19. Kovar D. R., Sirotkin V., Lord M.. ( 2011;). Three’s company: the fission yeast actin cytoskeleton. Trends Cell Biol21:177–187 [CrossRef][PubMed]
    [Google Scholar]
  20. Lisman Q., Pomorski T., Vogelzangs C., Urli-Stam D., de Cocq van Delwijnen W., Holthuis J. C.. ( 2004;). Protein sorting in the late Golgi of Saccharomyces cerevisiae does not require mannosylated sphingolipids. J Biol Chem279:1020–1029 [CrossRef][PubMed]
    [Google Scholar]
  21. Marks J., Hagan I. M., Hyams J. S.. ( 1986;). Growth polarity and cytokinesis in fission yeast: the role of the cytoskeleton. J Cell Sci Suppl5:229–241[PubMed][CrossRef]
    [Google Scholar]
  22. Martin S. G., McDonald W. H., Yates J. R. III, Chang F.. ( 2005;). Tea4p links microtubule plus ends with the formin for3p in the establishment of cell polarity. Dev Cell8:479–491 [CrossRef][PubMed]
    [Google Scholar]
  23. Martin S. G., Rincón S. A., Basu R., Pérez P., Chang F.. ( 2007;). Regulation of the formin for3p by cdc42p and bud6p . Mol Biol Cell18:4155–4167 [CrossRef][PubMed]
    [Google Scholar]
  24. Maundrell K.. ( 1990;). nmt1 of fission yeast. A highly transcribed gene completely repressed by thiamine. J Biol Chem265:10857–10864[PubMed]
    [Google Scholar]
  25. Morita T., Takegawa K.. ( 2004;). A simple and efficient procedure for transformation of Schizosaccharomyces pombe . Yeast21:613–617 [CrossRef][PubMed]
    [Google Scholar]
  26. Nakamura T., Nakamura-Kubo M., Hirata A., Shimoda C.. ( 2001;). The Schizosaccharomyces pombe spo3 + gene is required for assembly of the forespore membrane and genetically interacts with psy1+-encoding syntaxin-like protein. Mol Biol Cell12:3955–3972[PubMed][CrossRef]
    [Google Scholar]
  27. Nakase M., Tani M., Morita T., Kitamoto H. K., Kashiwazaki J., Nakamura T., Hosomi A., Tanaka N., Takegawa K.. ( 2010;). Mannosylinositol phosphorylceramide is a major sphingolipid component and is required for proper localization of plasma-membrane proteins in Schizosaccharomyces pombe . J Cell Sci123:1578–1587 [CrossRef][PubMed]
    [Google Scholar]
  28. Nakase M., Nakase Y., Chardwiriyapreecha S., Kakinuma Y., Matsumoto T., Takegawa K.. ( 2012;). Intracellular trafficking and ubiquitination of the Schizosaccharomyces pombe amino acid permease Aat1p. Microbiology158:659–673[PubMed][CrossRef]
    [Google Scholar]
  29. Nikko E., Marini A. M., André B.. ( 2003;). Permease recycling and ubiquitination status reveal a particular role for Bro1 in the multivesicular body pathway. J Biol Chem278:50732–50743 [CrossRef][PubMed]
    [Google Scholar]
  30. Odorizzi G., Babst M., Emr S. D.. ( 1998;). Fab1p PtdIns(3)P 5-kinase function essential for protein sorting in the multivesicular body. Cell95:847–858 [CrossRef][PubMed]
    [Google Scholar]
  31. Pata M. O., Hannun Y. A., Ng C. K.. ( 2010;). Plant sphingolipids: decoding the enigma of the Sphinx. New Phytol185:611–630 [CrossRef][PubMed]
    [Google Scholar]
  32. Perez P., Rincón S. A.. ( 2010;). Rho GTPases: regulation of cell polarity and growth in yeasts. Biochem J426:243–253 [CrossRef][PubMed]
    [Google Scholar]
  33. Prasad T., Saini P., Gaur N. A., Vishwakarma R. A., Khan L. A., Haq Q. M., Prasad R.. ( 2005;). Functional analysis of CaIPT1, a sphingolipid biosynthetic gene involved in multidrug resistance and morphogenesis of Candida albicans . Antimicrob Agents Chemother49:3442–3452 [CrossRef][PubMed]
    [Google Scholar]
  34. Puoti A., Desponds C., Conzelmann A.. ( 1991;). Biosynthesis of mannosylinositolphosphoceramide in Saccharomyces cerevisiae is dependent on genes controlling the flow of secretory vesicles from the endoplasmic reticulum to the Golgi. J Cell Biol113:515–525 [CrossRef][PubMed]
    [Google Scholar]
  35. Reggiori F., Pelham H. R.. ( 2001;). Sorting of proteins into multivesicular bodies: ubiquitin-dependent and -independent targeting. EMBO J20:5176–5186 [CrossRef][PubMed]
    [Google Scholar]
  36. Rozelle A. L., Machesky L. M., Yamamoto M., Driessens M. H., Insall R. H., Roth M. G., Luby-Phelps K., Marriott G., Hall A., Yin H. L.. ( 2000;). Phosphatidylinositol 4,5-bisphosphate induces actin-based movement of raft-enriched vesicles through WASP-Arp2/3. Curr Biol10:311–320 [CrossRef][PubMed]
    [Google Scholar]
  37. Sawai H., Okamoto Y., Luberto C., Mao C., Bielawska A., Domae N., Hannun Y. A.. ( 2000;). Identification of ISC1 (YER019w) as inositol phosphosphingolipid phospholipase C in Saccharomyces cerevisiae . J Biol Chem275:39793–39798 [CrossRef][PubMed]
    [Google Scholar]
  38. Smith S. W., Lester R. L.. ( 1974;). Inositol phosphorylceramide, a novel substance and the chief member of a major group of yeast sphingolipids containing a single inositol phosphate. J Biol Chem249:3395–3405[PubMed]
    [Google Scholar]
  39. Stock S. D., Hama H., Radding J. A., Young D. A., Takemoto J. Y.. ( 2000;). Syringomycin E inhibition of Saccharomyces cerevisiae: requirement for biosynthesis of sphingolipids with very-long-chain fatty acids and mannose- and phosphoinositol-containing head groups. Antimicrob Agents Chemother44:1174–1180 [CrossRef][PubMed]
    [Google Scholar]
  40. Tabuchi M., Tanaka N., Iwahara S., Takegawa K.. ( 1997;). The Schizosaccharomyces pombe gms1+ gene encodes an UDP-galactose transporter homologue required for protein galactosylation. Biochem Biophys Res Commun232:121–125 [CrossRef][PubMed]
    [Google Scholar]
  41. Takeda T., Kawate T., Chang F.. ( 2004;). Organization of a sterol-rich membrane domain by cdc15p during cytokinesis in fission yeast. Nat Cell Biol6:1142–1144 [CrossRef][PubMed]
    [Google Scholar]
  42. Takeshita N., Higashitsuji Y., Konzack S., Fischer R.. ( 2008;). Apical sterol-rich membranes are essential for localizing cell end markers that determine growth directionality in the filamentous fungus Aspergillus nidulans . Mol Biol Cell19:339–351 [CrossRef][PubMed]
    [Google Scholar]
  43. Tanaka N., Konomi M., Osumi M., Takegawa K.. ( 2001;). Characterization of a Schizosaccharomyces pombe mutant deficient in UDP-galactose transport activity. Yeast18:903–914 [CrossRef][PubMed]
    [Google Scholar]
  44. Thevissen K., Idkowiak-Baldys J., Im Y. J., Takemoto J., François I. E., Ferket K. K., Aerts A. M., Meert E. M., Winderickx J., Roosen J.. ( 2005;). SKN1, a novel plant defensin-sensitivity gene in Saccharomyces cerevisiae, is implicated in sphingolipid biosynthesis. FEBS Lett579:1973–1977 [CrossRef][PubMed]
    [Google Scholar]
  45. Thevissen K., Yen W. L., Carmona-Gutierrez D., Idkowiak-Baldys J., Aerts A. M., François I. E., Madeo F., Klionsky D. J., Hannun Y. A., Cammue B. P.. ( 2010;). Skn1 and Ipt1 negatively regulate autophagy in Saccharomyces cerevisiae . FEMS Microbiol Lett303:163–168 [CrossRef][PubMed]
    [Google Scholar]
  46. Uemura S., Kihara A., Inokuchi J., Igarashi Y.. ( 2003;). Csg1p and newly identified Csh1p function in mannosylinositol phosphorylceramide synthesis by interacting with Csg2p. J Biol Chem278:45049–45055 [CrossRef][PubMed]
    [Google Scholar]
  47. van Meer G., Voelker D. R., Feigenson G. W.. ( 2008;). Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol9:112–124 [CrossRef][PubMed]
    [Google Scholar]
  48. Wachtler V., Rajagopalan S., Balasubramanian M. K.. ( 2003;). Sterol-rich plasma membrane domains in the fission yeast Schizosaccharomyces pombe . J Cell Sci116:867–874 [CrossRef][PubMed]
    [Google Scholar]
  49. Wang S., Thibault G., Ng D. T.. ( 2011;). Routing misfolded proteins through the multivesicular body (MVB) pathway protects against proteotoxicity. J Biol Chem286:29376–29387 [CrossRef][PubMed]
    [Google Scholar]
  50. Warnecke D., Heinz E.. ( 2003;). Recently discovered functions of glucosylceramides in plants and fungi. Cell Mol Life Sci60:919–941[PubMed]
    [Google Scholar]
  51. Xu X., Bittman R., Duportail G., Heissler D., Vilcheze C., London E.. ( 2001;). Effect of the structure of natural sterols and sphingolipids on the formation of ordered sphingolipid/sterol domains (rafts). Comparison of cholesterol to plant, fungal, and disease-associated sterols and comparison of sphingomyelin, cerebrosides, and ceramide. J Biol Chem276:33540–33546 [CrossRef][PubMed]
    [Google Scholar]
  52. Zäuner S., Ternes P., Warnecke D.. ( 2010;). Biosynthesis of sphingolipids in plants (and some of their functions). Adv Exp Med Biol688:249–263 [CrossRef][PubMed]
    [Google Scholar]
  53. Zink S., Mehlgarten C., Kitamoto H. K., Nagase J., Jablonowski D., Dickson R. C., Stark M. J., Schaffrath R.. ( 2005;). Mannosyl-diinositolphospho-ceramide, the major yeast plasma membrane sphingolipid, governs toxicity of Kluyveromyces lactis zymocin. Eukaryot Cell4:879–889 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.056184-0
Loading
/content/journal/micro/10.1099/mic.0.056184-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error