1887

Abstract

In common with other bacterial taxa, members of the genus are classified using a range of phenotypic and biochemical approaches, which are not entirely satisfactory in assigning isolates to species groups. Recently, there has been increasing interest in using nucleotide sequences for bacterial typing and taxonomy, but to date, no broadly accepted alternative to conventional methods is available. Here, the taxonomic relationships of 55 representative members of the genus have been analysed using whole-genome sequence data. As genetic material belonging to the accessory genome is widely shared among different taxa but not present in all isolates, this analysis indexed nucleotide sequence variation within sets of genes, specifically protein-coding genes that were present and directly comparable in all isolates. Variation in these genes identified seven species groups, which were robust to the choice of genes and phylogenetic clustering methods used. The groupings were largely, but not completely, congruent with current species designations, with some minor changes in nomenclature and the reassignment of a few isolates necessary. In particular, these data showed that isolates classified as are polyphyletic and probably include more than one taxonomically distinct organism. The seven groups could be reliably and rapidly generated with sequence variation within the 53 ribosomal protein subunit () genes, further demonstrating that ribosomal multilocus sequence typing (rMLST) is a practicable and powerful means of characterizing bacteria at all levels, from domain to strain.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.056077-0
2012-06-01
2020-07-11
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/6/1570.html?itemId=/content/journal/micro/10.1099/mic.0.056077-0&mimeType=html&fmt=ahah

References

  1. Achtman M., Wagner M.. ( 2008;). Microbial diversity and the genetic nature of microbial species. Nat Rev Microbiol6:431–440[PubMed]
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. ( 1997;). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402 [CrossRef][PubMed]
    [Google Scholar]
  3. Anand C. M., Ashton F., Shaw H., Gordon R.. ( 1991;). Variability in growth of Neisseria polysaccharea on colistin-containing selective media for Neisseria spp. J Clin Microbiol29:2434–2437[PubMed]
    [Google Scholar]
  4. Barrett S. J., Sneath P. H. A.. ( 1994;). A numerical phenotypic taxonomic study of the genus Neisseria . Microbiology140:2867–2891 [CrossRef][PubMed]
    [Google Scholar]
  5. Bennett J. S., Griffiths D. T., McCarthy N. D., Sleeman K. L., Jolley K. A., Crook D. W., Maiden M. C.. ( 2005;). Genetic diversity and carriage dynamics of Neisseria lactamica in infants. Infect Immun73:2424–2432 [CrossRef][PubMed]
    [Google Scholar]
  6. Bennett J. S., Jolley K. A., Sparling P. F., Saunders N. J., Hart C. A., Feavers I. M., Maiden M. C.. ( 2007;). Species status of Neisseria gonorrhoeae: evolutionary and epidemiological inferences from multilocus sequence typing. BMC Biol5:35 [CrossRef][PubMed]
    [Google Scholar]
  7. Bennett J. S., Bentley S. D., Vernikos G. S., Quail M. A., Cherevach I., White B., Parkhill J., Maiden M. C. J.. ( 2010;). Independent evolution of the core and accessory gene sets in the genus Neisseria: insights gained from the genome of Neisseria lactamica isolate 020-06. BMC Genomics11:652 [CrossRef][PubMed]
    [Google Scholar]
  8. Bentley S. D., Vernikos G. S., Snyder L. A., Churcher C., Arrowsmith C., Chillingworth T., Cronin A., Davis P. H., Holroyd N. E. et al. ( 2007;). Meningococcal genetic variation mechanisms viewed through comparative analysis of serogroup C strain FAM18. PLoS Genet3:e23 [CrossRef][PubMed]
    [Google Scholar]
  9. Berger U.. ( 1971;). [Neisseria mucosa var. heidelbergensis]. Z Med Mikrobiol Immunol156:154–158 [CrossRef][PubMed]
    [Google Scholar]
  10. Berger U.. ( 1985;). First isolation of Neisseria polysacchareae species nova in the Federal Republic of Germany. Eur J Clin Microbiol4:431–433 [CrossRef][PubMed]
    [Google Scholar]
  11. Branham S. E.. ( 1930;). A new meningococcus-like organism (Neisseria flavescens n. sp.) from epidemic meningitis. Public Health Rep45:845–849 [CrossRef]
    [Google Scholar]
  12. Bryant D., Moulton V.. ( 2004;). Neighbor-net: an agglomerative method for the construction of phylogenetic networks. Mol Biol Evol21:255–265 [CrossRef][PubMed]
    [Google Scholar]
  13. Cann K. J., Rogers T. R.. ( 1989;). The phenotypic relationship of Neisseria polysaccharea to commensal and pathogenic Neisseria spp. J Med Microbiol29:251–254 [CrossRef][PubMed]
    [Google Scholar]
  14. Chung G. T., Yoo J. S., Oh H. B., Lee Y. S., Cha S. H., Kim S. J., Yoo C. K.. ( 2008;). Complete genome sequence of Neisseria gonorrhoeae NCCP11945. J Bacteriol190:6035–6036 [CrossRef][PubMed]
    [Google Scholar]
  15. Doolittle W. F.. ( 2008;). Microbial evolution: stalking the wild bacterial species. Curr Biol18:R565–R567 [CrossRef][PubMed]
    [Google Scholar]
  16. Dossett J. H., Appelbaum P. C., Knapp J. S., Totten P. A.. ( 1985;). Proctitis associated with Neisseria cinerea misidentified as Neisseria gonorrhoeae in a child. J Clin Microbiol21:575–577[PubMed]
    [Google Scholar]
  17. Excoffier L., Laval G., Schneider S.. ( 2005;). Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online1:47–50[PubMed]
    [Google Scholar]
  18. Gevers D., Cohan F. M., Lawrence J. G., Spratt B. G., Coenye T., Feil E. J., Stackebrandt E., Van de Peer Y., Vandamme P. et al. ( 2005;). Opinion: re-evaluating prokaryotic species. Nat Rev Microbiol3:733–739 [CrossRef][PubMed]
    [Google Scholar]
  19. Guibourdenche M., Popoff M. Y., Riou J. Y.. ( 1986;). Deoxyribonucleic acid relatedness among Neisseria gonorrhoeae, N. meningitidis, N. lactamica, N. cinerea and “Neisseria polysaccharea” . Ann Inst Pasteur Microbiol137B:177–185 [CrossRef][PubMed]
    [Google Scholar]
  20. Harmsen D., Singer C., Rothgänger J., Tønjum T., de Hoog G. S., Shah H., Albert J., Frosch M.. ( 2001;). Diagnostics of Neisseriaceae and Moraxellaceae by ribosomal DNA sequencing: ribosomal differentiation of medical microorganisms. J Clin Microbiol39:936–942 [CrossRef][PubMed]
    [Google Scholar]
  21. Huson D. H., Bryant D.. ( 2006;). Application of phylogenetic networks in evolutionary studies. Mol Biol Evol23:254–267 [CrossRef][PubMed]
    [Google Scholar]
  22. Jolley K. A., Maiden M. C.. ( 2010;). BIGSdb: Scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics11:595 [CrossRef][PubMed]
    [Google Scholar]
  23. Jolley K. A., Bliss C. M., Bennett J. S., Bratcher H. B., Brehony C. M., Colles F. M., Wimalarathna H. M., Harrison O. B., Sheppard S. K. et al. ( 2012;). Ribosomal multi-locus sequence typing: universal characterisation of bacteria from domain to strain. Microbiology4:1005–1015 [CrossRef][PubMed]
    [Google Scholar]
  24. Knapp J. S.. ( 1988;). Historical perspectives and identification of Neisseria and related species. Clin Microbiol Rev1:415–431[PubMed]
    [Google Scholar]
  25. Lapage S. P., Sneath P. H. A., Lessel E. F., Skerman V. B. D., Seeliger H. P. R., Clark W. A.. (editors) ( 1992;). International Code of Nomenclature of Bacteria (1990 Revision). Bacteriological Code Washington, DC: American Society for Microbiology;
    [Google Scholar]
  26. Librado P., Rozas J.. ( 2009;). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics25:1451–1452 [CrossRef][PubMed]
    [Google Scholar]
  27. Maiden M. C. J., Bygraves J. A., Feil E., Morelli G., Russell J. E., Urwin R., Zhang Q., Zhou J., Zurth K. et al. ( 1998;). Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A95:3140–3145 [CrossRef][PubMed]
    [Google Scholar]
  28. Maiden M. C.. ( 2008;). Population genomics: diversity and virulence in the Neisseria. . Curr Opin Microbiol11:467–471 [CrossRef][PubMed]
    [Google Scholar]
  29. Markowitz V. M., Chen I. M., Palaniappan K., Chu K., Szeto E., Grechkin Y., Ratner A., Anderson I., Lykidis A. et al. ( 2010;). The integrated microbial genomes system: an expanding comparative analysis resource. Nucleic Acids Res38:Database issueD382–D390 [CrossRef][PubMed]
    [Google Scholar]
  30. Marri P. R., Paniscus M., Weyand N. J., Rendón M. A., Calton C. M., Hernández D. R., Higashi D. L., Sodergren E., Weinstock G. M. et al. ( 2010;). Genome sequencing reveals widespread virulence gene exchange among human Neisseria species. PLoS ONE5:e11835 [CrossRef][PubMed]
    [Google Scholar]
  31. Maynard Smith J. M., Dowson C. G., Spratt B. G.. ( 1991;). Localized sex in bacteria. Nature349:29–31 [CrossRef][PubMed]
    [Google Scholar]
  32. Parkhill J., Achtman M., James K. D., Bentley S. D., Churcher C., Klee S. R., Morelli G., Basham D., Brown D. et al. ( 2000;). Complete DNA sequence of a serogroup A strain of Neisseria meningitidis Z2491. Nature404:502–506 [CrossRef][PubMed]
    [Google Scholar]
  33. Peng J., Yang L., Yang F., Yang J., Yan Y., Nie H., Zhang X., Xiong Z., Jiang Y. et al. ( 2008;). Characterization of ST-4821 complex, a unique Neisseria meningitidis clone. Genomics91:78–87 [CrossRef][PubMed]
    [Google Scholar]
  34. Riou J. Y., Guibourdenche M., Popoff M. Y.. ( 1983;). A new taxon in the genus Neisseria . Ann Microbiol (Paris)134B:257–267[PubMed]
    [Google Scholar]
  35. Saez-Nieto J. A., Dominguez J. R., Monton J. L., Cristobal P., Fenoll A., Vazquez J., Casal J., Taracena B.. ( 1985;). Carriage of Neisseria meningitidis and Neisseria lactamica in a school population during an epidemic period in Spain. J Hyg (Lond) 94:279–288 [CrossRef][PubMed]
    [Google Scholar]
  36. Saez-Nieto J. A., Lujan R., Martinez-Suarez J. V., Berron S., Vazquez J. A., Viñas M., Campos J.. ( 1990;). Neisseria lactamica and Neisseria polysaccharea as possible sources of meningococcal β-lactam resistance by genetic transformation. Antimicrob Agents Chemother34:2269–2272[PubMed][CrossRef]
    [Google Scholar]
  37. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  38. Schoen C., Blom J., Claus H., Schramm-Glück A., Brandt P., Müller T., Goesmann A., Joseph B., Konietzny S. et al. ( 2008;). Whole-genome comparison of disease and carriage strains provides insights into virulence evolution in Neisseria meningitidis . Proc Natl Acad Sci U S A105:3473–3478 [CrossRef][PubMed]
    [Google Scholar]
  39. Smith N. H., Holmes E. C., Donovan G. M., Carpenter G. A., Spratt B. G.. ( 1999;). Networks and groups within the genus Neisseria: analysis of argF, recA, rho, and 16S rRNA sequences from human Neisseria species. Mol Biol Evol16:773–783[PubMed][CrossRef]
    [Google Scholar]
  40. Spratt B. G.. ( 1988;). Hybrid penicillin-binding proteins in penicillin-resistant strains of Neisseria gonorrhoeae . Nature332:173–176 [CrossRef][PubMed]
    [Google Scholar]
  41. Stackebrandt E., Frederiksen W., Garrity G. M., Grimont P. A., Kämpfer P., Maiden M. C., Nesme X., Rosselló-Mora R., Swings J. et al. ( 2002;). Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol52:1043–1047 [CrossRef][PubMed]
    [Google Scholar]
  42. Tamura K., Dudley J., Nei M., Kumar S.. ( 2007;). mega4: Molecular Evolutionary Genetics Analysis (mega) software version 4.0. Mol Biol Evol24:1596–1599 [CrossRef][PubMed]
    [Google Scholar]
  43. Tettelin H., Saunders N. J., Heidelberg J., Jeffries A. C., Nelson K. E., Eisen J. A., Ketchum K. A., Hood D. W., Peden J. F. et al. ( 2000;). Complete genome sequence of Neisseria meningitidis serogroup B strain MC58. Science287:1809–1815 [CrossRef][PubMed]
    [Google Scholar]
  44. Tønjum T.. ( 2005;). Genus I. Neisseria . Bergey’s Manual of Systematic Bacteriology777–798 Garrity G. M., Brenner D. J., Krieg N. R., Staley J. R.. New York: Springer-Verlag;
    [Google Scholar]
  45. Tønjum T., Bukholm G., Bøvre K.. ( 1989;). Differentiation of some species of Neisseriaceae and other bacterial groups by DNA–DNA hybridization. APMIS97:395–405 [CrossRef][PubMed]
    [Google Scholar]
  46. Treangen T. J., Ambur O. H., Tonjum T., Rocha E. P.. ( 2008;). The impact of the neisserial DNA uptake sequences on genome evolution and stability. Genome Biol9:R60 [CrossRef][PubMed]
    [Google Scholar]
  47. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al. ( 1987;). Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol37:463–464 [CrossRef]
    [Google Scholar]
  48. Zaura E., Keijser B. J., Huse S. M., Crielaard W.. ( 2009;). Defining the healthy “core microbiome” of oral microbial communities. BMC Microbiol9:259 [CrossRef][PubMed]
    [Google Scholar]
  49. Zerbino D. R., Birney E.. ( 2008;). Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res18:821–829 [CrossRef][PubMed]
    [Google Scholar]
  50. Zhu P., Tsang R. S., Tsai C. M.. ( 2003;). Nonencapsulated Neisseria meningitidis strain produces amylopectin from sucrose: altering the concept for differentiation between N. meningitidis and N. polysaccharea . J Clin Microbiol41:273–278 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.056077-0
Loading
/content/journal/micro/10.1099/mic.0.056077-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error