1887

Abstract

Although and serovar Typhimurium have a similar flagellar regulatory system, the response of flagellar synthesis to nutrient conditions is quite different between the two: that is, in low-nutrient conditions, flagellar synthesis is inhibited in and enhanced in . In , this inhibition is mediated by an anti-FlhDC factor, YdiV, which is expressed in low-nutrient conditions and binds to FlhDC to inhibit the expression of the class 2 flagellar genes. The gene encodes a repressor of the gene, and thus is required for efficient flagellar gene expression in low-nutrient conditions in . In this study, we showed that the . gene encodes a protein which inhibits motility and flagellar production when expressed from a multicopy plasmid. We showed further that . YdiV binds to FlhDC and inhibits its binding to the class 2 flagellar promoter. These results indicate that . YdiV can also act as an anti-FlhDC factor. However, although the gene was transcribed efficiently in cells, the intracellular level of the YdiV protein was extremely low due to its inefficient translation. Consistent with this, cells did not require FliZ for efficient motility development. This indicates that, unlike in , the FliZ–YdiV regulatory system does not work in the nutritional control of flagellar gene expression in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.056036-0
2012-06-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/6/1533.html?itemId=/content/journal/micro/10.1099/mic.0.056036-0&mimeType=html&fmt=ahah

References

  1. Adler J., Templeton B. ( 1967). The effect of environmental conditions on the motility of Escherichia coli . J Gen Microbiol 46:175–184[PubMed] [CrossRef]
    [Google Scholar]
  2. Aldridge P., Hughes K. T. ( 2002). Regulation of flagellar assembly. Curr Opin Microbiol 5:160–165 [View Article][PubMed]
    [Google Scholar]
  3. Aldridge C., Poonchareon K., Saini S., Ewen T., Soloyva A., Rao C. V., Imada K., Minamino T., Aldridge P. D. ( 2010). The interaction dynamics of a negative feedback loop regulates flagellar number in Salmonella enterica serovar Typhimurium. Mol Microbiol 78:1416–1430 [View Article][PubMed]
    [Google Scholar]
  4. Amann E., Ochs B., Abel K.-J. ( 1988). Tightly regulated tac promoter vectors useful for the expression of unfused and fused proteins in Escherichia coli . Gene 69:301–315 [View Article][PubMed]
    [Google Scholar]
  5. Baba T., Ara T., Hasegawa M., Takai Y., Okumura Y., Baba M., Datsenko K. A., Tomita M., Wanner B. L., Mori H. ( 2006). Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2:2006–0008, 0008 [View Article][PubMed]
    [Google Scholar]
  6. Casadaban M. J. ( 1976). Transposition and fusion of the lac genes to selected promoters in Escherichia coli using bacteriophage lambda and Mu. J Mol Biol 104:541–555 [View Article][PubMed]
    [Google Scholar]
  7. Datsenko K. A., Wanner B. L. ( 2000). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645 [View Article][PubMed]
    [Google Scholar]
  8. Dyszel J. L., Soares J. A., Swearingen M. C., Lindsay A., Smith J. N., Ahmer B. M. ( 2010). E. coli K-12 and EHEC genes regulated by SdiA. PLoS ONE 5:e8946 [View Article][PubMed]
    [Google Scholar]
  9. Ellermeier C. D., Janakiraman A., Slauch J. M. ( 2002). Construction of targeted single copy lac fusions using λ Red and FLP-mediated site-specific recombination in bacteria. Gene 290:153–161 [View Article][PubMed]
    [Google Scholar]
  10. Feng Y., Cronan J. E. ( 2010). Overlapping repressor binding sites result in additive regulation of Escherichia coli FadH by FadR and ArcA. J Bacteriol 192:4289–4299 [View Article][PubMed]
    [Google Scholar]
  11. Ferenci T., Zhou Z., Betteridge T., Ren Y., Liu Y., Feng L., Reeves P. R., Wang L. ( 2009). Genomic sequencing reveals regulatory mutations and recombinational events in the widely used MC4100 lineage of Escherichia coli K-12. J Bacteriol 191:4025–4029 [View Article][PubMed]
    [Google Scholar]
  12. Hayashi F., Smith K. D., Ozinsky A., Hawn T. R., Yi E. C., Goodlett D. R., Eng J. K., Akira S., Underhill D. M., Aderem A. ( 2001). The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410:1099–1103 [View Article][PubMed]
    [Google Scholar]
  13. Hisert K. B., MacCoss M., Shiloh M. U., Darwin K. H., Singh S., Jones R. A., Ehrt S., Zhang Z., Gaffney B. L. et al. ( 2005). A glutamate-alanine-leucine (EAL) domain protein of Salmonella controls bacterial survival in mice, antioxidant defence and killing of macrophages: role of cyclic diGMP. Mol Microbiol 56:1234–1245 [View Article][PubMed]
    [Google Scholar]
  14. Hughes K. T., Gillen K. L., Semon M. J., Karlinsey J. E. ( 1993). Sensing structural intermediates in bacterial flagellar assembly by export of a negative regulator. Science 262:1277–1280 [View Article][PubMed]
    [Google Scholar]
  15. Ibarra J. A., Steele-Mortimer O. ( 2009). Salmonella – the ultimate insider. Salmonella virulence factors that modulate intracellular survival. Cell Microbiol 11:1579–1586 [View Article][PubMed]
    [Google Scholar]
  16. Ide N., Ikebe T., Kutsukake K. ( 1999). Reevaluation of the promoter structure of the class 3 flagellar operons of Escherichia coli and Salmonella . Genes Genet Syst 74:113–116 [View Article][PubMed]
    [Google Scholar]
  17. Iino T., Komeda Y., Kutsukake K., Macnab R. M., Matsumura P., Parkinson J. S., Simon M. I., Yamaguchi S. ( 1988). New unified nomenclature for the flagellar genes of Escherichia coli and Salmonella typhimurium . Microbiol Rev 52:533–535[PubMed]
    [Google Scholar]
  18. Ikebe T., Iyoda S., Kutsukake K. ( 1999a). Structure and expression of the fliA operon of Salmonella typhimurium . Microbiology 145:1389–1396 [View Article][PubMed]
    [Google Scholar]
  19. Ikebe T., Iyoda S., Kutsukake K. ( 1999b). Promoter analysis of the class 2 flagellar operons of Salmonella . Genes Genet Syst 74:179–183 [View Article][PubMed]
    [Google Scholar]
  20. Ishizuka H., Hanamura A., Kunimura T., Aiba H. ( 1993). A lowered concentration of cAMP receptor protein caused by glucose is an important determinant for catabolite repression in Escherichia coli . Mol Microbiol 10:341–350 [View Article][PubMed]
    [Google Scholar]
  21. Iyoda S., Kutsukake K. ( 1995). Molecular dissection of the flagellum-specific anti-sigma factor, FlgM, of Salmonella typhimurium . Mol Gen Genet 249:417–424[PubMed]
    [Google Scholar]
  22. Kahramanoglou C., Seshasayee A. S., Prieto A. I., Ibberson D., Schmidt S., Zimmermann J., Benes V., Fraser G. M., Luscombe N. M. ( 2011). Direct and indirect effects of H-NS and Fis on global gene expression control in Escherichia coli . Nucleic Acids Res 39:2073–2091 [View Article][PubMed]
    [Google Scholar]
  23. Komeda Y. ( 1982). Fusions of flagellar operons to lactose genes on a mu lac bacteriophage. J Bacteriol 150:16–26[PubMed]
    [Google Scholar]
  24. Komeda Y. ( 1986). Transcriptional control of flagellar genes in Escherichia coli K-12. J Bacteriol 168:1315–1318[PubMed]
    [Google Scholar]
  25. Komeda Y., Kutsukake K., Iino T. ( 1980). Definition of additional flagellar genes in Escherichia coli K12. Genetics 94:277–290[PubMed]
    [Google Scholar]
  26. Koop A. H., Hartley M. E., Bourgeois S. ( 1987). A low-copy-number vector utilizing β-galactosidase for the analysis of gene control elements. Gene 52:245–256 [View Article][PubMed]
    [Google Scholar]
  27. Kutsukake K. ( 1994). Excretion of the anti-sigma factor through a flagellar substructure couples flagellar gene expression with flagellar assembly in Salmonella typhimurium . Mol Gen Genet 243:605–612[PubMed]
    [Google Scholar]
  28. Kutsukake K. ( 1997). Autogenous and global control of the flagellar master operon, flhD, in Salmonella typhimurium . Mol Gen Genet 254:440–448 [View Article][PubMed]
    [Google Scholar]
  29. Kutsukake K., Iino T. ( 1994). Role of the FliA-FlgM regulatory system on the transcriptional control of the flagellar regulon and flagellar formation in Salmonella typhimurium . J Bacteriol 176:3598–3605[PubMed]
    [Google Scholar]
  30. Kutsukake K., Nambu T. ( 2000). Bacterial flagellum: a paradigm for biogenesis of transenvelope supramolecular structures. Recent Res Dev Microbiol 4:607–615
    [Google Scholar]
  31. Kutsukake K., Iino T., Komeda Y., Yamaguchi S. ( 1980). Functional homology of fla genes between Salmonella typhimurium and Escherichia coli . Mol Gen Genet 178:59–67 [View Article][PubMed]
    [Google Scholar]
  32. Kutsukake K., Ohya Y., Yamaguchi S., Iino T. ( 1988). Operon structure of flagellar genes in Salmonella typhimurium . Mol Gen Genet 214:11–15 [View Article][PubMed]
    [Google Scholar]
  33. Kutsukake K., Ohya Y., Iino T. ( 1990). Transcriptional analysis of the flagellar regulon of Salmonella typhimurium . J Bacteriol 172:741–747[PubMed]
    [Google Scholar]
  34. Kutsukake K., Iyoda S., Ohnishi K., Iino T. ( 1994). Genetic and molecular analyses of the interaction between the flagellum-specific sigma and anti-sigma factors in Salmonella typhimurium . EMBO J 13:4568–4576[PubMed]
    [Google Scholar]
  35. Kutsukake K., Ikebe T., Yamamoto S. ( 1999). Two novel regulatory genes, fliT and fliZ, in the flagellar regulon of Salmonella . Genes Genet Syst 74:287–292 [View Article][PubMed]
    [Google Scholar]
  36. Kutsukake K., Nakashima H., Tominaga A., Abo T. ( 2006). Two DNA invertases contribute to flagellar phase variation in Salmonella enterica serovar Typhimurium strain LT2. J Bacteriol 188:950–957 [View Article][PubMed]
    [Google Scholar]
  37. Lee Y.-Y., Barker C. S., Matsumura P., Belas R. ( 2011). Refining the binding of the Escherichia coli flagellar master regulator, FlhD4C2, on a base-specific level. J Bacteriol 193:4057–4068 [View Article][PubMed]
    [Google Scholar]
  38. Liu X., Matsumura P. ( 1994). The FlhD/FlhC complex, a transcriptional activator of the Escherichia coli flagellar class II operons. J Bacteriol 176:7345–7351[PubMed]
    [Google Scholar]
  39. Liu X., Fujita N., Ishihama A., Matsumura P. ( 1995). The C-terminal region of the α subunit of Escherichia coli RNA polymerase is required for transcriptional activation of the flagellar level II operons by the FlhD/FlhC complex. J Bacteriol 177:5186–5188[PubMed]
    [Google Scholar]
  40. McClelland M., Florea L., Sanderson K., Clifton S. W., Parkhill J., Churcher C., Dougan G., Wilson R. K., Miller W. ( 2000). Comparison of the Escherichia coli K-12 genome with sampled genomes of a Klebsiella pneumoniae and three Salmonella enterica serovars, Typhimurium, Typhi and Paratyphi. Nucleic Acids Res 28:4974–4986 [View Article][PubMed]
    [Google Scholar]
  41. Miller J. H. ( 1972). Assay for β-galactosidase. Experiments in Molecular Genetics352–355 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  42. Mytelka D. S., Chamberlin M. J. ( 1996). Escherichia coli fliAZY operon. J Bacteriol 178:24–34[PubMed]
    [Google Scholar]
  43. Ohnishi K., Kutsukake K., Suzuki H., Iino T. ( 1990). Gene fliA encodes an alternative sigma factor specific for flagellar operons in Salmonella typhimurium . Mol Gen Genet 221:139–147 [View Article][PubMed]
    [Google Scholar]
  44. Ohnishi K., Kutsukake K., Suzuki H., Lino T. ( 1992). A novel transcriptional regulation mechanism in the flagellar regulon of Salmonella typhimurium: an anti-sigma factor inhibits the activity of the flagellum-specific sigma factor, σF . Mol Microbiol 6:3149–3157 [View Article][PubMed]
    [Google Scholar]
  45. Pesavento C., Becker G., Sommerfeldt N., Possling A., Tschowri N., Mehlis A., Hengge R. ( 2008). Inverse regulatory coordination of motility and curli-mediated adhesion in Escherichia coli . Genes Dev 22:2434–2446 [View Article][PubMed]
    [Google Scholar]
  46. Quadling C., Stocker B. A. ( 1962). An environmentally-induced transition from the flagellated to the non-flagellated state in Salmonella typhimurium: the fate of parental flagella at cell division. J Gen Microbiol 28:257–270[PubMed] [CrossRef]
    [Google Scholar]
  47. Shin S., Park C. ( 1995). Modulation of flagellar expression in Escherichia coli by acetyl phosphate and the osmoregulator OmpR. J Bacteriol 177:4696–4702[PubMed]
    [Google Scholar]
  48. Silverman M., Simon M. ( 1974). Characterization of Escherichia coli flagellar mutants that are insensitive to catabolite repression. J Bacteriol 120:1196–1203[PubMed]
    [Google Scholar]
  49. Simms A. N., Mobley H. L. ( 2008). Multiple genes repress motility in uropathogenic Escherichia coli constitutively expressing type 1 fimbriae. J Bacteriol 190:3747–3756 [View Article][PubMed]
    [Google Scholar]
  50. Soutourina O. A., Bertin P. N. ( 2003). Regulation cascade of flagellar expression in Gram-negative bacteria. FEMS Microbiol Rev 27:505–523 [View Article][PubMed]
    [Google Scholar]
  51. Takaya A., Erhardt M., Karata K., Winterberg K., Yamamoto T., Hughes K. T. ( 2012). YdiV: a dual function protein that targets FlhDC for ClpXP-dependent degradation by promoting release of DNA-bound FlhDC complex. Mol Microbiol 83:1268–1284 [View Article][PubMed]
    [Google Scholar]
  52. Tanabe Y., Wada T., Ono K., Abo T., Kutsukake K. ( 2011). The transcript from the σ28-dependent promoter is translationally inert in the expression of the σ28-encoding gene fliA in the fliAZ operon of Salmonella enterica serovar Typhimurium. J Bacteriol 193:6132–6141 [View Article][PubMed]
    [Google Scholar]
  53. Uyar E., Kurokawa K., Yoshimura M., Ishikawa S., Ogasawara N., Oshima T. ( 2009). Differential binding profiles of StpA in wild-type and hns mutant cells: a comparative analysis of cooperative partners by chromatin immunoprecipitation-microarray analysis. J Bacteriol 191:2388–2391 [View Article][PubMed]
    [Google Scholar]
  54. Uzzau S., Figueroa-Bossi N., Rubino S., Bossi L. ( 2001). Epitope tagging of chromosomal genes in Salmonella . Proc Natl Acad Sci U S A 98:15264–15269 [View Article][PubMed]
    [Google Scholar]
  55. Wada T., Morizane T., Abo T., Tominaga A., Inoue-Tanaka K., Kutsukake K. ( 2011a). EAL domain protein YdiV acts as an anti-FlhD4C2 factor responsible for nutritional control of the flagellar regulon in Salmonella enterica Serovar Typhimurium. J Bacteriol 193:1600–1611 [View Article][PubMed]
    [Google Scholar]
  56. Wada T., Tanabe Y., Kutsukake K. ( 2011b). FliZ acts as a repressor of the ydiV gene, which encodes an anti-FlhD4C2 factor of the flagellar regulon in Salmonella enterica serovar Typhimurium. J Bacteriol 193:5191–5198 [View Article][PubMed]
    [Google Scholar]
  57. Wang S., Fleming R. T., Westbrook E. M., Matsumura P., McKay D. B. ( 2006). Structure of the Escherichia coli FlhDC complex, a prokaryotic heteromeric regulator of transcription. J Mol Biol 355:798–808 [View Article][PubMed]
    [Google Scholar]
  58. Wozniak C. E., Hughes K. T. ( 2008). Genetic dissection of the consensus sequence for the class 2 and class 3 flagellar promoters. J Mol Biol 379:936–952 [View Article][PubMed]
    [Google Scholar]
  59. Yamamoto S., Kutsukake K. ( 2006). FliT acts as an anti-FlhD2C2 factor in the transcriptional control of the flagellar regulon in Salmonella enterica serovar Typhimurium. J Bacteriol 188:6703–6708 [View Article][PubMed]
    [Google Scholar]
  60. Yanagihara S., Iyoda S., Ohnishi K., Iino T., Kutsukake K. ( 1999). Structure and transcriptional control of the flagellar master operon of Salmonella typhimurium . Genes Genet Syst 74:105–111 [View Article][PubMed]
    [Google Scholar]
  61. Yokota T., Gots J. S. ( 1970). Requirement of adenosine 3′, 5′-cyclic phosphate for flagella formation in Escherichia coli and Salmonella typhimurium . J Bacteriol 103:513–516[PubMed]
    [Google Scholar]
  62. Zhao K., Liu M., Burgess R. R. ( 2007). Adaptation in bacterial flagellar and motility systems: from regulon members to ‘foraging’-like behavior in E. coli . Nucleic Acids Res 35:4441–4452 [View Article][PubMed]
    [Google Scholar]
  63. Zhou X., Meng X., Sun B. ( 2008). An EAL domain protein and cyclic AMP contribute to the interaction between the two quorum sensing systems in Escherichia coli . Cell Res 18:937–948 [View Article][PubMed]
    [Google Scholar]
  64. Zuker M. ( 2003). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.056036-0
Loading
/content/journal/micro/10.1099/mic.0.056036-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error