1887

Abstract

is found ubiquitously in the human oral cavity and is mainly associated with bacterial communities implicated in the establishment and development of periodontal disease. The ability to become integrated within biofilm communities is crucial to the growth and survival of oral bacteria, and involves inter-bacterial coaggregation, metabolic cooperation, and synergy against host defences. In this article we show that the chymotrypsin-like proteinase (CTLP), found within a high-molecular-mass complex on the cell surface, mediates adherence of to other potential periodontal pathogens, , , and . Proteolytic activity per se did not appear to be required for the interactions, and expression of the major outer-sheath protein (Msp) was not necessary, except for binding . Biofilms of densely packed cells and matrix, up to 40 µm in depth, were formed between and on salivary pellicle, with cells enriched in the upper layers. Expression of CTLP, but not Msp, was critical for dual-species biofilm formation with . did not form dual-species biofilms with any of the other three periodontal bacterial species under various conditions. Synergy between and was also shown by increased inhibition of blood clotting, which was CTLP-dependent. The results demonstrate the critical role of CTLP in interactions of with other oral micro-organisms, leading to synergy in microbial community development and host tissue pathogenesis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.055939-0
2012-03-01
2020-12-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/3/759.html?itemId=/content/journal/micro/10.1099/mic.0.055939-0&mimeType=html&fmt=ahah

References

  1. Ali R. W., Skaug N., Nilsen R., Bakken V.. ( 1994;). Microbial associations of 4 putative periodontal pathogens in Sudanese adult periodontitis patients determined by DNA probe analysis. J Periodontol65:1053–1057[PubMed][CrossRef]
    [Google Scholar]
  2. Aruni A. W., Roy F., Fletcher H. M.. ( 2011;). Filifactor alocis has virulence attributes that can enhance its persistence under oxidative stress conditions and mediate invasion of epithelial cells by Porphyromonas gingivalis . Infect Immun79:3872–3886 [CrossRef][PubMed]
    [Google Scholar]
  3. Bakthavatchalu V., Meka A., Mans J. J., Sathishkumar S., Lopez M. C., Bhattacharyya I., Boyce B. F., Baker H. V., Lamont R. J.. & other authors ( 2011;). Polymicrobial periodontal pathogen transcriptomes in calvarial bone and soft tissue. Mol Oral Microbiol26:303–320 [CrossRef][PubMed]
    [Google Scholar]
  4. Bamford C. V., Fenno J. C., Jenkinson H. F., Dymock D.. ( 2007;). The chymotrypsin-like protease complex of Treponema denticola ATCC 35405 mediates fibrinogen adherence and degradation. Infect Immun75:4364–4372 [CrossRef][PubMed]
    [Google Scholar]
  5. Byrne S. J., Dashper S. G., Darby I. B., Adams G. G., Hoffmann B., Reynolds E. C.. ( 2009;). Progression of chronic periodontitis can be predicted by the levels of Porphyromonas gingivalis and Treponema denticola in subgingival plaque. Oral Microbiol Immunol24:469–477 [CrossRef][PubMed]
    [Google Scholar]
  6. Chi B., Qi M., Kuramitsu H. K.. ( 2003;). Role of dentilisin in Treponema denticola epithelial cell layer penetration. Res Microbiol154:637–643 [CrossRef][PubMed]
    [Google Scholar]
  7. Choi B. K., Paster B. J., Dewhirst F. E., Göbel U. B.. ( 1994;). Diversity of cultivable and uncultivable oral spirochetes from a patient with severe destructive periodontitis. Infect Immun62:1889–1895[PubMed]
    [Google Scholar]
  8. Colombo A. P., Boches S. K., Cotton S. L., Goodson J. M., Kent R., Haffajee A. D., Socransky S. S., Hasturk H., Van Dyke T. E.. & other authors ( 2009;). Comparisons of subgingival microbial profiles of refractory periodontitis, severe periodontitis, and periodontal health using the human oral microbe identification microarray. J Periodontol80:1421–1432 [CrossRef][PubMed]
    [Google Scholar]
  9. Correia F. F., Plummer A. R., Ellen R. P., Wyss C., Boches S. K., Galvin J. L., Paster B. J., Dewhirst F. E.. ( 2003;). Two paralogous families of a two-gene subtilisin operon are widely distributed in oral treponemes. J Bacteriol185:6860–6869 [CrossRef][PubMed]
    [Google Scholar]
  10. Dashper S. G., Seers C. A., Tan K. H., Reynolds E. C.. ( 2011;). Virulence factors of the oral spirochete Treponema denticola . J Dent Res90:691–703 [CrossRef][PubMed]
    [Google Scholar]
  11. Dewhirst F. E., Tamer M. A., Ericson R. E., Lau C. N., Levanos V. A., Boches S. K., Galvin J. L., Paster B. J.. ( 2000;). The diversity of periodontal spirochetes by 16S rRNA analysis. Oral Microbiol Immunol15:196–202 [CrossRef][PubMed]
    [Google Scholar]
  12. Dewhirst F. E., Chen T., Izard J., Paster B. J., Tanner A. C., Yu W. H., Lakshmanan A., Wade W. G.. ( 2010;). The human oral microbiome. J Bacteriol192:5002–5017 [CrossRef][PubMed]
    [Google Scholar]
  13. Edwards A. M., Dymock D., Woodward M. J., Jenkinson H. F.. ( 2003;). Genetic relatedness and phenotypic characteristics of Treponema associated with human periodontal tissues and ruminant foot disease. Microbiology149:1083–1093 [CrossRef][PubMed]
    [Google Scholar]
  14. Ellen R. P., Ko K. S., Lo C. M., Grove D. A., Ishihara K.. ( 2000;). Insertional inactivation of the prtP gene of Treponema denticola confirms dentilisin’s disruption of epithelial junctions. J Mol Microbiol Biotechnol2:581–586[PubMed]
    [Google Scholar]
  15. Faveri M., Figueiredo L. C., Duarte P. M., Mestnik M. J., Mayer M. P. A., Feres M.. ( 2009;). Microbiological profile of untreated subjects with localized aggressive periodontitis. J Clin Periodontol36:739–749 [CrossRef][PubMed]
    [Google Scholar]
  16. Fenno J. C., Wong G. W. K., Hannam P. M., McBride B. C.. ( 1998a;). Mutagenesis of outer membrane virulence determinants of the oral spirochete Treponema denticola . FEMS Microbiol Lett163:209–215 [CrossRef][PubMed]
    [Google Scholar]
  17. Fenno J. C., Hannam P. M., Leung W. K., Tamura M., Uitto V. J., McBride B. C.. ( 1998b;). Cytopathic effects of the major surface protein and the chymotrypsinlike protease of Treponema denticola . Infect Immun66:1869–1877[PubMed]
    [Google Scholar]
  18. Godovikova V., Wang H. T., Goetting-Minesky M. P., Ning Y., Capone R. F., Slater C. K., Fenno J. C.. ( 2010;). Treponema denticola PrcB is required for expression and activity of the PrcA-PrtP (dentilisin) complex. J Bacteriol192:3337–3344 [CrossRef][PubMed]
    [Google Scholar]
  19. Godovikova V., Goetting-Minesky M. P., Fenno J. C.. ( 2011;). Composition and localization of Treponema denticola outer membrane complexes. Infect Immun79:4868–4875 [CrossRef][PubMed]
    [Google Scholar]
  20. Grenier D.. ( 1992;). Demonstration of a bimodal coaggregation reaction between Porphyromonas gingivalis and Treponema denticola . Oral Microbiol Immunol7:280–284 [CrossRef][PubMed]
    [Google Scholar]
  21. Guo Y., Nguyen K. A., Potempa J.. ( 2010;). Dichotomy of gingipains action as virulence factors: from cleaving substrates with the precision of a surgeon’s knife to a meat chopper-like brutal degradation of proteins. Periodontol 200054:15–44 [CrossRef][PubMed]
    [Google Scholar]
  22. Hashimoto M., Ogawa S., Asai Y., Takai Y., Ogawa T.. ( 2003;). Binding of Porphyromonas gingivalis fimbriae to Treponema denticola dentilisin. FEMS Microbiol Lett226:267–271 [CrossRef][PubMed]
    [Google Scholar]
  23. Ishihara K., Miura T., Kuramitsu H. K., Okuda K.. ( 1996;). Characterization of the Treponema denticola prtP gene encoding a prolyl-phenylalanine-specific protease (dentilisin). Infect Immun64:5178–5186[PubMed]
    [Google Scholar]
  24. Ito R., Ishihara K., Shoji M., Nakayama K., Okuda K.. ( 2010;). Hemagglutinin/adhesin domains of Porphyromonas gingivalis play key roles in coaggregation with Treponema denticola . FEMS Immunol Med Microbiol60:251–260 [CrossRef][PubMed]
    [Google Scholar]
  25. Jenkinson H. F.. ( 2011;). Beyond the oral microbiome. Environ Microbiol13:3077–3087 [CrossRef][PubMed]
    [Google Scholar]
  26. Joshi V. M., Vandana K. L.. ( 2007;). The detection of eight putative periodontal pathogens in adult and rapidly progressive periodontitis patients: an institutional study. Indian J Dent Res18:6–10 [CrossRef][PubMed]
    [Google Scholar]
  27. Kesavalu L., Sathishkumar S., Bakthavatchalu V., Matthews C., Dawson D., Steffen M., Ebersole J. L.. ( 2007;). Rat model of polymicrobial infection, immunity, and alveolar bone resorption in periodontal disease. Infect Immun75:1704–1712 [CrossRef][PubMed]
    [Google Scholar]
  28. Kigure T., Saito A., Seida K., Yamada S., Ishihara K., Okuda K.. ( 1995;). Distribution of Porphyromonas gingivalis and Treponema denticola in human subgingival plaque at different periodontal pocket depths examined by immunohistochemical methods. J Periodontal Res30:332–341 [CrossRef][PubMed]
    [Google Scholar]
  29. Kolenbrander P. E., Parrish K. D., Andersen R. N., Greenberg E. P.. ( 1995;). Intergeneric coaggregation of oral Treponema spp. with Fusobacterium spp. and intrageneric coaggregation among Fusobacterium spp. Infect Immun63:4584–4588[PubMed]
    [Google Scholar]
  30. Kolenbrander P. E., Andersen R. N., Blehert D. S., Egland P. G., Foster J. S., Palmer R. J. Jr. ( 2002;). Communication among oral bacteria. Microbiol Mol Biol Rev66:486–505 [CrossRef][PubMed]
    [Google Scholar]
  31. Kolenbrander P. E., Palmer R. J. Jr, Rickard A. H., Jakubovics N. S., Chalmers N. I., Diaz P. I.. ( 2006;). Bacterial interactions and successions during plaque development. Periodontol 200042:47–79 [CrossRef][PubMed]
    [Google Scholar]
  32. Kolenbrander P. E., Palmer R. J. Jr, Periasamy S., Jakubovics N. S.. ( 2010;). Oral multispecies biofilm development and the key role of cell–cell distance. Nat Rev Microbiol8:471–480 [CrossRef][PubMed]
    [Google Scholar]
  33. Lamont R. J., Jenkinson H. F.. ( 1998;). Life below the gum line: pathogenic mechanisms of Porphyromonas gingivalis . Microbiol Mol Biol Rev62:1244–1263[PubMed]
    [Google Scholar]
  34. Maddocks S. E., Wright C. J., Nobbs A. H., Brittan J. L., Franklin L., Strömberg N., Kadioglu A., Jepson M. A., Jenkinson H. F.. ( 2011;). Streptococcus pyogenes antigen I/II-family polypeptide AspA shows differential ligand-binding properties and mediates biofilm formation. Mol Microbiol81:1034–1049 [CrossRef][PubMed]
    [Google Scholar]
  35. Mäkinen P. L., Mäkinen K. K., Syed S. A.. ( 1995;). Role of the chymotrypsin-like membrane-associated proteinase from Treponema denticola ATCC 35405 in inactivation of bioactive peptides. Infect Immun63:3567–3575[PubMed]
    [Google Scholar]
  36. Mayanagi G., Sato T., Shimauchi H., Takahashi N.. ( 2004;). Detection frequency of periodontitis-associated bacteria by polymerase chain reaction in subgingival and supragingival plaque of periodontitis and healthy subjects. Oral Microbiol Immunol19:379–385 [CrossRef][PubMed]
    [Google Scholar]
  37. McAlister A. D., Sroka A., Fitzpatrick R. E., Quinsey N. S., Travis J., Potempa J., Pike R. N.. ( 2009;). Gingipain enzymes from Porphyromonas gingivalis preferentially bind immobilized extracellular proteins: a mechanism favouring colonization?. J Periodontal Res44:348–353 [CrossRef][PubMed]
    [Google Scholar]
  38. McDowell J. V., Huang B., Fenno J. C., Marconi R. T.. ( 2009;). Analysis of a unique interaction between the complement regulatory protein factor H and the periodontal pathogen Treponema denticola . Infect Immun77:1417–1425 [CrossRef][PubMed]
    [Google Scholar]
  39. Mineoka T., Awano S., Rikimaru T., Kurata H., Yoshida A., Ansai T., Takehara T.. ( 2008;). Site-specific development of periodontal disease is associated with increased levels of Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia in subgingival plaque. J Periodontol79:670–676 [CrossRef][PubMed]
    [Google Scholar]
  40. Miyamoto M., Ishihara K., Okuda K.. ( 2006;). The Treponema denticola surface protease dentilisin degrades interleukin-1 β (IL-1 β), IL-6, and tumor necrosis factor alpha. Infect Immun74:2462–2467 [CrossRef][PubMed]
    [Google Scholar]
  41. Moffatt C. E., Whitmore S. E., Griffen A. L., Leys E. J., Lamont R. J.. ( 2011;). Filifactor alocis interactions with gingival epithelial cells. Mol Oral Microbiol26:365–373 [CrossRef][PubMed]
    [Google Scholar]
  42. Montagner F., Jacinto R. C., Signoretti F. G., Gomes B. P.. ( 2010;). Treponema species detected in infected root canals and acute apical abscess exudates. J Endod36:1796–1799 [CrossRef][PubMed]
    [Google Scholar]
  43. Moore W. E. C., Holdeman L. V., Smibert R. M., Hash D. E., Burmeister J. A., Ranney R. R.. ( 1982;). Bacteriology of severe periodontitis in young adult humans. Infect Immun38:1137–1148[PubMed]
    [Google Scholar]
  44. O’Brien-Simpson N. M., Veith P. D., Dashper S. G., Reynolds E. C.. ( 2003;). Porphyromonas gingivalis gingipains: the molecular teeth of a microbial vampire. Curr Protein Pept Sci4:409–426 [CrossRef][PubMed]
    [Google Scholar]
  45. Ohta K., Mäkinen K. K., Loesche W. J.. ( 1986;). Purification and characterization of an enzyme produced by Treponema denticola capable of hydrolyzing synthetic trypsin substrates. Infect Immun53:213–220[PubMed]
    [Google Scholar]
  46. Onagawa M., Ishihara K., Okuda K.. ( 1994;). Coaggregation between Porphyromonas gingivalis and Treponema denticola . Bull Tokyo Dent Coll35:171–181[PubMed]
    [Google Scholar]
  47. Orth R., O’Brien-Simpson N., Dashper S., Walsh K., Reynolds E.. ( 2010;). An efficient method for enumerating oral spirochetes using flow cytometry. J Microbiol Methods80:123–128 [CrossRef][PubMed]
    [Google Scholar]
  48. Orth R. K., O’Brien-Simpson N. M., Dashper S. G., Reynolds E. C.. ( 2011;). Synergistic virulence of Porphyromonas gingivalis and Treponema denticola in a murine periodontitis model. Mol Oral Microbiol26:229–240 [CrossRef][PubMed]
    [Google Scholar]
  49. Paster B. J., Boches S. K., Galvin J. L., Ericson R. E., Lau C. N., Levanos V. A., Sahasrabudhe A., Dewhirst F. E.. ( 2001;). Bacterial diversity in human subgingival plaque. J Bacteriol183:3770–3783 [CrossRef][PubMed]
    [Google Scholar]
  50. Pederson E. D., Miller J. W., Matheson S., Simonson L. G., Chadwick D. E., Covill P. J., Turner D. W., Lamberts B. L., Morton H. E.. ( 1994;). Trypsin-like activity levels of Treponema denticola and Porphyromonas gingivalis in adults with periodontitis. J Clin Periodontol21:519–525 [CrossRef][PubMed]
    [Google Scholar]
  51. Periasamy S., Chalmers N. I., Du-Thumm L., Kolenbrander P. E.. ( 2009;). Fusobacterium nucleatum ATCC 10953 requires Actinomyces naeslundii ATCC 43146 for growth on saliva in a three-species community that includes Streptococcus oralis 34. Appl Environ Microbiol75:3250–3257 [CrossRef][PubMed]
    [Google Scholar]
  52. Riviere G. R., Wagoner M. A., Baker-Zander S. A., Weisz K. S., Adams D. F., Simonson L., Lukehart S. A.. ( 1991;). Identification of spirochetes related to Treponema pallidum in necrotizing ulcerative gingivitis and chronic periodontitis. N Engl J Med325:539–543 [CrossRef][PubMed]
    [Google Scholar]
  53. Riviere G. R., Elliot K. S., Adams D. F., Simonson L. G., Forgas L. B., Nilius A. M., Lukehart S. A.. ( 1992;). Relative proportions of pathogen-related oral spirochetes (PROS) and Treponema denticola in supragingival and subgingival plaque from patients with periodontitis. J Periodontol63:131–136[PubMed][CrossRef]
    [Google Scholar]
  54. Rosen G., Genzler T., Sela M. N.. ( 2008;). Coaggregation of Treponema denticola with Porphyromonas gingivalis and Fusobacterium nucleatum is mediated by the major outer sheath protein of Treponema denticola . FEMS Microbiol Lett289:59–66 [CrossRef][PubMed]
    [Google Scholar]
  55. Simonson L. G., McMahon K. T., Childers D. W., Morton H. E.. ( 1992;). Bacterial synergy of Treponema denticola and Porphyromonas gingivalis in a multinational population. Oral Microbiol Immunol7:111–112 [CrossRef][PubMed]
    [Google Scholar]
  56. Siqueira J. F. Jr, Rôças I. N.. ( 2004;). Treponema species associated with abscesses of endodontic origin. Oral Microbiol Immunol19:336–339 [CrossRef][PubMed]
    [Google Scholar]
  57. Siqueira J. F. Jr, Rôças I. N.. ( 2009;). The microbiota of acute apical abscesses. J Dent Res88:61–65 [CrossRef][PubMed]
    [Google Scholar]
  58. Socransky S. S., Haffajee A. D., Cugini M. A., Smith C., Kent R. L. Jr. ( 1998;). Microbial complexes in subgingival plaque. J Clin Periodontol25:134–144 [CrossRef][PubMed]
    [Google Scholar]
  59. Söder P. O., Jin L. J., Söder B.. ( 1993;). DNA probe detection of periodontopathogens in advanced periodontitis. Scand J Dent Res101:363–370[PubMed]
    [Google Scholar]
  60. Sundqvist G.. ( 1992;). Associations between microbial species in dental root canal infections. Oral Microbiol Immunol7:257–262 [CrossRef][PubMed]
    [Google Scholar]
  61. Uitto V. J., Grenier D., Chan E. C. S., McBride B. C.. ( 1988;). Isolation of a chymotrypsinlike enzyme from Treponema denticola . Infect Immun56:2717–2722[PubMed]
    [Google Scholar]
  62. Vesey P. M., Kuramitsu H. K.. ( 2004;). Genetic analysis of Treponema denticola ATCC 35405 biofilm formation. Microbiology150:2401–2407 [CrossRef][PubMed]
    [Google Scholar]
  63. Visser M. B., Ellen R. P.. ( 2011;). New insights into the emerging role of oral spirochaetes in periodontal disease. Clin Microbiol Infect17:502–512 [CrossRef][PubMed]
    [Google Scholar]
  64. Yamada M., Ikegami A., Kuramitsu H. K.. ( 2005;). Synergistic biofilm formation by Treponema denticola and Porphyromonas gingivalis . FEMS Microbiol Lett250:271–277 [CrossRef][PubMed]
    [Google Scholar]
  65. Yao E. S., Lamont R. J., Leu S. P., Weinberg A.. ( 1996;). Interbacterial binding among strains of pathogenic and commensal oral bacterial species. Oral Microbiol Immunol11:35–41 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.055939-0
Loading
/content/journal/micro/10.1099/mic.0.055939-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error