1887

Abstract

is a lactic acid bacterium commonly found in the gastrointestinal tract of animals, and some strains are used as probiotics. The ability of probiotic strains to survive the passage through the gastrointestinal tract is considered a key factor for their probiotic action. Therefore, tolerance to bile salts is a desirable feature for probiotic strains. In this study we have characterized the response of BL23 to bile by a transcriptomic and proteomic approach. The analysis revealed that exposure to bile induced changes in the abundance of 52 proteins and the transcript levels of 67 genes. The observed changes affected genes and proteins involved in the stress response, fatty acid and cell wall biosynthesis, metabolism of carbohydrates, transport of peptides, coenzyme levels, membrane H-ATPase, and a number of uncharacterized genes and proteins. These data provide new insights into the mechanisms that enable BL23 to cope with bile stress.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.055657-0
2012-05-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/5/1206.html?itemId=/content/journal/micro/10.1099/mic.0.055657-0&mimeType=html&fmt=ahah

References

  1. Adams C. A. ( 2010). The probiotic paradox: live and dead cells are biological response modifiers. Nutr Res Rev 23:37–46 [View Article][PubMed]
    [Google Scholar]
  2. Agledal L., Niere M., Ziegler M. ( 2010). The phosphate makes a difference: cellular functions of NADP. Redox Rep 15:2–10 [View Article][PubMed]
    [Google Scholar]
  3. Alberola T. M., García-Martínez J., Antúnez O., Viladevall L., Barceló A., Ariño J., Pérez-Ortín J. E. ( 2004). A new set of DNA macrochips for the yeast Saccharomyces cerevisiae: features and uses. Int Microbiol 7:199–206[PubMed]
    [Google Scholar]
  4. Alcántara C., Revilla-Guarinos A., Zúñiga M. ( 2011). Influence of two-component signal transduction systems of Lactobacillus casei BL23 on tolerance to stress conditions. Appl Environ Microbiol 77:1516–1519 [View Article][PubMed]
    [Google Scholar]
  5. Arikado E., Ishihara H., Ehara T., Shibata C., Saito H., Kakegawa T., Igarashi K., Kobayashi H. ( 1999). Enzyme level of enterococcal F1F0-ATPase is regulated by pH at the step of assembly. Eur J Biochem 259:262–268 [View Article][PubMed]
    [Google Scholar]
  6. Baida G. E., Kuzmin N. P. ( 1995). Cloning and primary structure of a new hemolysin gene from Bacillus cereus . Biochim Biophys Acta 1264:151–154[PubMed] [CrossRef]
    [Google Scholar]
  7. Bäuerl C., Pérez-Martínez G., Yan F., Polk D. B., Monedero V. ( 2010). Functional analysis of the p40 and p75 proteins from Lactobacillus casei BL23. J Mol Microbiol Biotechnol 19:231–241 [View Article][PubMed]
    [Google Scholar]
  8. Begley M., Gahan C. G., Hill C. ( 2005). The interaction between bacteria and bile. FEMS Microbiol Rev 29:625–651 [View Article][PubMed]
    [Google Scholar]
  9. Bitoun J. P., Nguyen A. H., Fan Y., Burne R. A., Wen Z. T. ( 2011). Transcriptional repressor Rex is involved in regulation of oxidative stress response and biofilm formation by Streptococcus mutans . FEMS Microbiol Lett 320:110–117 [View Article][PubMed]
    [Google Scholar]
  10. Bron P. A., Marco M., Hoffer S. M., Van Mullekom E., de Vos W. M., Kleerebezem M. ( 2004). Genetic characterization of the bile salt response in Lactobacillus plantarum and analysis of responsive promoters in vitro and in situ in the gastrointestinal tract. J Bacteriol 186:7829–7835 [View Article][PubMed]
    [Google Scholar]
  11. Bron P. A., Molenaar D., de Vos W. M., Kleerebezem M. ( 2006). DNA micro-array-based identification of bile-responsive genes in Lactobacillus plantarum . J Appl Microbiol 100:728–738 [View Article][PubMed]
    [Google Scholar]
  12. Burns P., Sánchez B., Vinderola G., Ruas-Madiedo P., Ruiz L., Margolles A., Reinheimer J., de los Reyes-Gavilán C. G. ( 2010). Inside the adaptation process of Lactobacillus delbrueckii subsp. lactis to bile. Int J Food Microbiol 142:132–141 [View Article][PubMed]
    [Google Scholar]
  13. Corcoran B. M., Stanton C., Fitzgerald G., Ross R. P. ( 2008). Life under stress: the probiotic stress response and how it may be manipulated. Curr Pharm Des 14:1382–1399 [View Article][PubMed]
    [Google Scholar]
  14. de Vrese M., Schrezenmeir J. ( 2008). Probiotics, prebiotics, and synbiotics. Adv Biochem Eng Biotechnol 111:1–66[PubMed]
    [Google Scholar]
  15. Derré I., Rapoport G., Msadek T. ( 1999). CtsR, a novel regulator of stress and heat shock response, controls clp and molecular chaperone gene expression in Gram-positive bacteria. Mol Microbiol 31:117–131 [View Article][PubMed]
    [Google Scholar]
  16. Duché O., Trémoulet F., Glaser P., Labadie J. ( 2002). Salt stress proteins induced in Listeria monocytogenes . Appl Environ Microbiol 68:1491–1498 [View Article][PubMed]
    [Google Scholar]
  17. Fiocco D., Capozzi V., Collins M., Gallone A., Hols P., Guzzo J., Weidmann S., Rieu A., Msadek T., Spano G. ( 2010). Characterization of the CtsR stress response regulon in Lactobacillus plantarum . J Bacteriol 192:896–900 [View Article][PubMed]
    [Google Scholar]
  18. Frees D., Savijoki K., Varmanen P., Ingmer H. ( 2007). Clp ATPases and ClpP proteolytic complexes regulate vital biological processes in low GC, Gram-positive bacteria. Mol Microbiol 63:1285–1295 [View Article][PubMed]
    [Google Scholar]
  19. Hamon E., Horvatovich P., Izquierdo E., Bringel F., Marchioni E., Aoudé-Werner D., Ennahar S. ( 2011). Comparative proteomic analysis of Lactobacillus plantarum for the identification of key proteins in bile tolerance. BMC Microbiol 11:63 [View Article][PubMed]
    [Google Scholar]
  20. Hamon E., Horvatovich P., Bisch M., Bringel F., Marchioni E., Aoudé-Werner D., Ennahar S. ( 2012). Investigation of biomarkers of bile tolerance in Lactobacillus casei using comparative proteomics. J Proteome Res 11:109–118 [View Article][PubMed]
    [Google Scholar]
  21. Jones L. J., Carballido-López R., Errington J. ( 2001). Control of cell shape in bacteria: helical, actin-like filaments in Bacillus subtilis . Cell 104:913–922 [View Article][PubMed]
    [Google Scholar]
  22. Komatsuzawa H., Fujiwara T., Nishi H., Yamada S., Ohara M., McCallum N., Berger-Bächi B., Sugai M. ( 2004). The gate controlling cell wall synthesis in Staphylococcus aureus . Mol Microbiol 53:1221–1231 [View Article][PubMed]
    [Google Scholar]
  23. Koskenniemi K., Laakso K., Koponen J., Kankainen M., Greco D., Auvinen P., Savijoki K., Nyman T. A., Surakka A. & other authors ( 2011). Proteomics and transcriptomics characterization of bile stress response in probiotic Lactobacillus rhamnosus GG. Mol Cell Proteomics 10:M110–, 002741[PubMed] [CrossRef]
    [Google Scholar]
  24. Kurdi P., Kawanishi K., Mizutani K., Yokota A. ( 2006). Mechanism of growth inhibition by free bile acids in lactobacilli and bifidobacteria. J Bacteriol 188:1979–1986 [View Article][PubMed]
    [Google Scholar]
  25. Landete J. M., García-Haro L., Blasco A., Manzanares P., Berbegal C., Monedero V., Zúñiga M. ( 2010). Requirement of the Lactobacillus casei MaeKR two-component system for l-malic acid utilization via a malic enzyme pathway. Appl Environ Microbiol 76:84–95 [View Article][PubMed]
    [Google Scholar]
  26. Lee K., Lee H. G., Choi Y. J. ( 2008). Proteomic analysis of the effect of bile salts on the intestinal and probiotic bacterium Lactobacillus reuteri . J Biotechnol 137:14–19 [View Article][PubMed]
    [Google Scholar]
  27. Makarova K., Slesarev A., Wolf Y., Sorokin A., Mirkin B., Koonin E., Pavlov A., Pavlova N., Karamychev V. & other authors ( 2006). Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci U S A 103:15611–15616 [View Article][PubMed]
    [Google Scholar]
  28. Margolles A., Yokota A. ( 2011). Bile stress in lactic acid bacteria and bifidobacteria. Lactic Acid Bacteria and Bifidobacteria: Current Progress in Advanced Research111–142 Sonomoto K., Yokota A. Wymondham: Horizon Scientific Press;
    [Google Scholar]
  29. Mazé A., Boël G., Zúñiga M., Bourand A., Loux V., Yebra M. J., Monedero V., Correia K., Jacques N. & other authors ( 2010). Complete genome sequence of the probiotic Lactobacillus casei strain BL23. J Bacteriol 192:2647–2648 [View Article][PubMed]
    [Google Scholar]
  30. Merritt M. E., Donaldson J. R. ( 2009). Effect of bile salts on the DNA and membrane integrity of enteric bacteria. J Med Microbiol 58:1533–1541 [View Article][PubMed]
    [Google Scholar]
  31. Monedero V., Mazé A., Boël G., Zúñiga M., Beaufils S., Hartke A., Deutscher J. ( 2007). The phosphotransferase system of Lactobacillus casei: regulation of carbon metabolism and connection to cold shock response. J Mol Microbiol Biotechnol 12:20–32 [View Article][PubMed]
    [Google Scholar]
  32. Oelschlaeger T. A. ( 2010). Mechanisms of probiotic actions – a review. Int J Med Microbiol 300:57–62 [View Article][PubMed]
    [Google Scholar]
  33. Petersohn A., Brigulla M., Haas S., Hoheisel J. D., Völker U., Hecker M. ( 2001). Global analysis of the general stress response of Bacillus subtilis . J Bacteriol 183:5617–5631 [View Article][PubMed]
    [Google Scholar]
  34. Pfaffl M. W., Horgan G. W., Dempfle L. ( 2002). Relative expression software tool (rest) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:e36 [View Article][PubMed]
    [Google Scholar]
  35. Pfeiler E. A., Klaenhammer T. R. ( 2009). Role of transporter proteins in bile tolerance of Lactobacillus acidophilus . Appl Environ Microbiol 75:6013–6016 [View Article][PubMed]
    [Google Scholar]
  36. Pfeiler E. A., Azcárate-Peril M. A., Klaenhammer T. R. ( 2007). Characterization of a novel bile-inducible operon encoding a two-component regulatory system in Lactobacillus acidophilus . J Bacteriol 189:4624–4634 [View Article][PubMed]
    [Google Scholar]
  37. Rivas-Sendra A., Landete J. M., Alcántara C., Zúñiga M. ( 2011). Response of Lactobacillus casei BL23 to phenolic compounds. J Appl Microbiol 111:1473–1481 [View Article][PubMed]
    [Google Scholar]
  38. Ruiz L., Sánchez B., Ruas-Madiedo P., de los Reyes-Gavilán C. G., Margolles A. ( 2007). Cell envelope changes in Bifidobacterium animalis ssp. lactis as a response to bile. FEMS Microbiol Lett 274:316–322 [View Article][PubMed]
    [Google Scholar]
  39. Sánchez B., Urdaci M. C., Margolles A. ( 2010). Extracellular proteins secreted by probiotic bacteria as mediators of effects that promote mucosa–bacteria interactions. Microbiology 156:3232–3242 [View Article][PubMed]
    [Google Scholar]
  40. Schulze-Gahmen U., Pelaschier J., Yokota H., Kim R., Kim S. H. ( 2003). Crystal structure of a hypothetical protein, TM841 of Thermotoga maritima, reveals its function as a fatty acid-binding protein. Proteins 50:526–530 [View Article][PubMed]
    [Google Scholar]
  41. Shi F., Li Y., Li Y., Wang X. ( 2009). Molecular properties, functions, and potential applications of NAD kinases. Acta Biochim Biophys Sin (Shanghai) 41:352–361 [View Article][PubMed]
    [Google Scholar]
  42. Sundar S., McGinness K. E., Baker T. A., Sauer R. T. ( 2010). Multiple sequence signals direct recognition and degradation of protein substrates by the AAA+ protease HslUV. J Mol Biol 403:420–429 [View Article][PubMed]
    [Google Scholar]
  43. Tang Y. T., Hu T., Arterburn M., Boyle B., Bright J. M., Emtage P. C., Funk W. D. ( 2005). PAQR proteins: a novel membrane receptor family defined by an ancient 7-transmembrane pass motif. J Mol Evol 61:372–380 [View Article][PubMed]
    [Google Scholar]
  44. Taranto M. P., Fernández Murga M. L., Lorca G., de Valdez G. F. ( 2003). Bile salts and cholesterol induce changes in the lipid cell membrane of Lactobacillus reuteri . J Appl Microbiol 95:86–91 [View Article][PubMed]
    [Google Scholar]
  45. Taranto M. P., Pérez-Martinez G., Font de Valdez G. ( 2006). Effect of bile acid on the cell membrane functionality of lactic acid bacteria for oral administration. Res Microbiol 157:720–725 [View Article][PubMed]
    [Google Scholar]
  46. Vandesompele J., De Preter K., Pattyn F., Poppe B., Van Roy N., De Paepe A., Speleman F. ( 2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:RESEARCH0034 [View Article][PubMed]
    [Google Scholar]
  47. Veyrat A., Monedero V., Pérez-Martínez G. ( 1994). Glucose transport by the phosphoenolpyruvate : mannose phosphotransferase system in Lactobacillus casei ATCC 393 and its role in carbon catabolite repression. Microbiology 140:1141–1149 [View Article][PubMed]
    [Google Scholar]
  48. Vila-Sanjurjo A., Schuwirth B. S., Hau C. W., Cate J. H. ( 2004). Structural basis for the control of translation initiation during stress. Nat Struct Mol Biol 11:1054–1059 [View Article][PubMed]
    [Google Scholar]
  49. Whitehead K., Versalovic J., Roos S., Britton R. A. ( 2008). Genomic and genetic characterization of the bile stress response of probiotic Lactobacillus reuteri ATCC 55730. Appl Environ Microbiol 74:1812–1819 [View Article][PubMed]
    [Google Scholar]
  50. Winkler W. C., Nahvi A., Roth A., Collins J. A., Breaker R. R. ( 2004). Control of gene expression by a natural metabolite-responsive ribozyme. Nature 428:281–286 [View Article][PubMed]
    [Google Scholar]
  51. Wu R., Sun Z., Wu J., Meng H., Zhang H. ( 2010). Effect of bile salts stress on protein synthesis of Lactobacillus casei Zhang revealed by 2-dimensional gel electrophoresis. J Dairy Sci 93:3858–3868 [View Article][PubMed]
    [Google Scholar]
  52. Wu R., Zhang W., Sun T., Wu J., Yue X., Meng H., Zhang H. ( 2011). Proteomic analysis of responses of a new probiotic bacterium Lactobacillus casei Zhang to low acid stress. Int J Food Microbiol 147:181–187 [View Article][PubMed]
    [Google Scholar]
  53. Yebra M. J., Monedero V., Zúñiga M., Deutscher J., Pérez-Martínez G. ( 2006). Molecular analysis of the glucose-specific phosphoenolpyruvate : sugar phosphotransferase system from Lactobacillus casei and its links with the control of sugar metabolism. Microbiology 152:95–104 [View Article][PubMed]
    [Google Scholar]
  54. Young K. D. ( 2010). Bacterial shape: two-dimensional questions and possibilities. Annu Rev Microbiol 64:223–240 [View Article][PubMed]
    [Google Scholar]
  55. Zúñiga M., Miralles Md M. C., Pérez-Martínez G. ( 2002). The product of arcR, the sixth gene of the arc operon of Lactobacillus sakei, is essential for expression of the arginine deiminase pathway. Appl Environ Microbiol 68:6051–6058 [View Article][PubMed]
    [Google Scholar]
  56. Zúñiga M., Gómez-Escoín C. L., González-Candelas F. ( 2011). Evolutionary history of the OmpR/IIIA family of signal transduction two component systems in Lactobacillaceae and Leuconostocaceae . BMC Evol Biol 11:34 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.055657-0
Loading
/content/journal/micro/10.1099/mic.0.055657-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error