1887

Abstract

is a lactic acid bacterium commonly found in the gastrointestinal tract of animals, and some strains are used as probiotics. The ability of probiotic strains to survive the passage through the gastrointestinal tract is considered a key factor for their probiotic action. Therefore, tolerance to bile salts is a desirable feature for probiotic strains. In this study we have characterized the response of BL23 to bile by a transcriptomic and proteomic approach. The analysis revealed that exposure to bile induced changes in the abundance of 52 proteins and the transcript levels of 67 genes. The observed changes affected genes and proteins involved in the stress response, fatty acid and cell wall biosynthesis, metabolism of carbohydrates, transport of peptides, coenzyme levels, membrane H-ATPase, and a number of uncharacterized genes and proteins. These data provide new insights into the mechanisms that enable BL23 to cope with bile stress.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.055657-0
2012-05-01
2020-12-04
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/5/1206.html?itemId=/content/journal/micro/10.1099/mic.0.055657-0&mimeType=html&fmt=ahah

References

  1. Adams C. A.. ( 2010;). The probiotic paradox: live and dead cells are biological response modifiers. Nutr Res Rev23:37–46 [CrossRef][PubMed]
    [Google Scholar]
  2. Agledal L., Niere M., Ziegler M.. ( 2010;). The phosphate makes a difference: cellular functions of NADP. Redox Rep15:2–10 [CrossRef][PubMed]
    [Google Scholar]
  3. Alberola T. M., García-Martínez J., Antúnez O., Viladevall L., Barceló A., Ariño J., Pérez-Ortín J. E.. ( 2004;). A new set of DNA macrochips for the yeast Saccharomyces cerevisiae: features and uses. Int Microbiol7:199–206[PubMed]
    [Google Scholar]
  4. Alcántara C., Revilla-Guarinos A., Zúñiga M.. ( 2011;). Influence of two-component signal transduction systems of Lactobacillus casei BL23 on tolerance to stress conditions. Appl Environ Microbiol77:1516–1519 [CrossRef][PubMed]
    [Google Scholar]
  5. Arikado E., Ishihara H., Ehara T., Shibata C., Saito H., Kakegawa T., Igarashi K., Kobayashi H.. ( 1999;). Enzyme level of enterococcal F1F0-ATPase is regulated by pH at the step of assembly. Eur J Biochem259:262–268 [CrossRef][PubMed]
    [Google Scholar]
  6. Baida G. E., Kuzmin N. P.. ( 1995;). Cloning and primary structure of a new hemolysin gene from Bacillus cereus . Biochim Biophys Acta1264:151–154[PubMed][CrossRef]
    [Google Scholar]
  7. Bäuerl C., Pérez-Martínez G., Yan F., Polk D. B., Monedero V.. ( 2010;). Functional analysis of the p40 and p75 proteins from Lactobacillus casei BL23. J Mol Microbiol Biotechnol19:231–241 [CrossRef][PubMed]
    [Google Scholar]
  8. Begley M., Gahan C. G., Hill C.. ( 2005;). The interaction between bacteria and bile. FEMS Microbiol Rev29:625–651 [CrossRef][PubMed]
    [Google Scholar]
  9. Bitoun J. P., Nguyen A. H., Fan Y., Burne R. A., Wen Z. T.. ( 2011;). Transcriptional repressor Rex is involved in regulation of oxidative stress response and biofilm formation by Streptococcus mutans . FEMS Microbiol Lett320:110–117 [CrossRef][PubMed]
    [Google Scholar]
  10. Bron P. A., Marco M., Hoffer S. M., Van Mullekom E., de Vos W. M., Kleerebezem M.. ( 2004;). Genetic characterization of the bile salt response in Lactobacillus plantarum and analysis of responsive promoters in vitro and in situ in the gastrointestinal tract. J Bacteriol186:7829–7835 [CrossRef][PubMed]
    [Google Scholar]
  11. Bron P. A., Molenaar D., de Vos W. M., Kleerebezem M.. ( 2006;). DNA micro-array-based identification of bile-responsive genes in Lactobacillus plantarum . J Appl Microbiol100:728–738 [CrossRef][PubMed]
    [Google Scholar]
  12. Burns P., Sánchez B., Vinderola G., Ruas-Madiedo P., Ruiz L., Margolles A., Reinheimer J., de los Reyes-Gavilán C. G.. ( 2010;). Inside the adaptation process of Lactobacillus delbrueckii subsp. lactis to bile. Int J Food Microbiol142:132–141 [CrossRef][PubMed]
    [Google Scholar]
  13. Corcoran B. M., Stanton C., Fitzgerald G., Ross R. P.. ( 2008;). Life under stress: the probiotic stress response and how it may be manipulated. Curr Pharm Des14:1382–1399 [CrossRef][PubMed]
    [Google Scholar]
  14. de Vrese M., Schrezenmeir J.. ( 2008;). Probiotics, prebiotics, and synbiotics. Adv Biochem Eng Biotechnol111:1–66[PubMed]
    [Google Scholar]
  15. Derré I., Rapoport G., Msadek T.. ( 1999;). CtsR, a novel regulator of stress and heat shock response, controls clp and molecular chaperone gene expression in Gram-positive bacteria. Mol Microbiol31:117–131 [CrossRef][PubMed]
    [Google Scholar]
  16. Duché O., Trémoulet F., Glaser P., Labadie J.. ( 2002;). Salt stress proteins induced in Listeria monocytogenes . Appl Environ Microbiol68:1491–1498 [CrossRef][PubMed]
    [Google Scholar]
  17. Fiocco D., Capozzi V., Collins M., Gallone A., Hols P., Guzzo J., Weidmann S., Rieu A., Msadek T., Spano G.. ( 2010;). Characterization of the CtsR stress response regulon in Lactobacillus plantarum . J Bacteriol192:896–900 [CrossRef][PubMed]
    [Google Scholar]
  18. Frees D., Savijoki K., Varmanen P., Ingmer H.. ( 2007;). Clp ATPases and ClpP proteolytic complexes regulate vital biological processes in low GC, Gram-positive bacteria. Mol Microbiol63:1285–1295 [CrossRef][PubMed]
    [Google Scholar]
  19. Hamon E., Horvatovich P., Izquierdo E., Bringel F., Marchioni E., Aoudé-Werner D., Ennahar S.. ( 2011;). Comparative proteomic analysis of Lactobacillus plantarum for the identification of key proteins in bile tolerance. BMC Microbiol11:63 [CrossRef][PubMed]
    [Google Scholar]
  20. Hamon E., Horvatovich P., Bisch M., Bringel F., Marchioni E., Aoudé-Werner D., Ennahar S.. ( 2012;). Investigation of biomarkers of bile tolerance in Lactobacillus casei using comparative proteomics. J Proteome Res11:109–118 [CrossRef][PubMed]
    [Google Scholar]
  21. Jones L. J., Carballido-López R., Errington J.. ( 2001;). Control of cell shape in bacteria: helical, actin-like filaments in Bacillus subtilis . Cell104:913–922 [CrossRef][PubMed]
    [Google Scholar]
  22. Komatsuzawa H., Fujiwara T., Nishi H., Yamada S., Ohara M., McCallum N., Berger-Bächi B., Sugai M.. ( 2004;). The gate controlling cell wall synthesis in Staphylococcus aureus . Mol Microbiol53:1221–1231 [CrossRef][PubMed]
    [Google Scholar]
  23. Koskenniemi K., Laakso K., Koponen J., Kankainen M., Greco D., Auvinen P., Savijoki K., Nyman T. A., Surakka A.. & other authors ( 2011;). Proteomics and transcriptomics characterization of bile stress response in probiotic Lactobacillus rhamnosus GG. Mol Cell Proteomics10:M110–, 002741[PubMed][CrossRef]
    [Google Scholar]
  24. Kurdi P., Kawanishi K., Mizutani K., Yokota A.. ( 2006;). Mechanism of growth inhibition by free bile acids in lactobacilli and bifidobacteria. J Bacteriol188:1979–1986 [CrossRef][PubMed]
    [Google Scholar]
  25. Landete J. M., García-Haro L., Blasco A., Manzanares P., Berbegal C., Monedero V., Zúñiga M.. ( 2010;). Requirement of the Lactobacillus casei MaeKR two-component system for l-malic acid utilization via a malic enzyme pathway. Appl Environ Microbiol76:84–95 [CrossRef][PubMed]
    [Google Scholar]
  26. Lee K., Lee H. G., Choi Y. J.. ( 2008;). Proteomic analysis of the effect of bile salts on the intestinal and probiotic bacterium Lactobacillus reuteri . J Biotechnol137:14–19 [CrossRef][PubMed]
    [Google Scholar]
  27. Makarova K., Slesarev A., Wolf Y., Sorokin A., Mirkin B., Koonin E., Pavlov A., Pavlova N., Karamychev V.. & other authors ( 2006;). Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci U S A103:15611–15616 [CrossRef][PubMed]
    [Google Scholar]
  28. Margolles A., Yokota A.. ( 2011;). Bile stress in lactic acid bacteria and bifidobacteria. Lactic Acid Bacteria and Bifidobacteria: Current Progress in Advanced Research111–142 Sonomoto K., Yokota A.. Wymondham: Horizon Scientific Press;
    [Google Scholar]
  29. Mazé A., Boël G., Zúñiga M., Bourand A., Loux V., Yebra M. J., Monedero V., Correia K., Jacques N.. & other authors ( 2010;). Complete genome sequence of the probiotic Lactobacillus casei strain BL23. J Bacteriol192:2647–2648 [CrossRef][PubMed]
    [Google Scholar]
  30. Merritt M. E., Donaldson J. R.. ( 2009;). Effect of bile salts on the DNA and membrane integrity of enteric bacteria. J Med Microbiol58:1533–1541 [CrossRef][PubMed]
    [Google Scholar]
  31. Monedero V., Mazé A., Boël G., Zúñiga M., Beaufils S., Hartke A., Deutscher J.. ( 2007;). The phosphotransferase system of Lactobacillus casei: regulation of carbon metabolism and connection to cold shock response. J Mol Microbiol Biotechnol12:20–32 [CrossRef][PubMed]
    [Google Scholar]
  32. Oelschlaeger T. A.. ( 2010;). Mechanisms of probiotic actions – a review. Int J Med Microbiol300:57–62 [CrossRef][PubMed]
    [Google Scholar]
  33. Petersohn A., Brigulla M., Haas S., Hoheisel J. D., Völker U., Hecker M.. ( 2001;). Global analysis of the general stress response of Bacillus subtilis . J Bacteriol183:5617–5631 [CrossRef][PubMed]
    [Google Scholar]
  34. Pfaffl M. W., Horgan G. W., Dempfle L.. ( 2002;). Relative expression software tool (rest) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res30:e36 [CrossRef][PubMed]
    [Google Scholar]
  35. Pfeiler E. A., Klaenhammer T. R.. ( 2009;). Role of transporter proteins in bile tolerance of Lactobacillus acidophilus . Appl Environ Microbiol75:6013–6016 [CrossRef][PubMed]
    [Google Scholar]
  36. Pfeiler E. A., Azcárate-Peril M. A., Klaenhammer T. R.. ( 2007;). Characterization of a novel bile-inducible operon encoding a two-component regulatory system in Lactobacillus acidophilus . J Bacteriol189:4624–4634 [CrossRef][PubMed]
    [Google Scholar]
  37. Rivas-Sendra A., Landete J. M., Alcántara C., Zúñiga M.. ( 2011;). Response of Lactobacillus casei BL23 to phenolic compounds. J Appl Microbiol111:1473–1481 [CrossRef][PubMed]
    [Google Scholar]
  38. Ruiz L., Sánchez B., Ruas-Madiedo P., de los Reyes-Gavilán C. G., Margolles A.. ( 2007;). Cell envelope changes in Bifidobacterium animalis ssp. lactis as a response to bile. FEMS Microbiol Lett274:316–322 [CrossRef][PubMed]
    [Google Scholar]
  39. Sánchez B., Urdaci M. C., Margolles A.. ( 2010;). Extracellular proteins secreted by probiotic bacteria as mediators of effects that promote mucosa–bacteria interactions. Microbiology156:3232–3242 [CrossRef][PubMed]
    [Google Scholar]
  40. Schulze-Gahmen U., Pelaschier J., Yokota H., Kim R., Kim S. H.. ( 2003;). Crystal structure of a hypothetical protein, TM841 of Thermotoga maritima, reveals its function as a fatty acid-binding protein. Proteins50:526–530 [CrossRef][PubMed]
    [Google Scholar]
  41. Shi F., Li Y., Li Y., Wang X.. ( 2009;). Molecular properties, functions, and potential applications of NAD kinases. Acta Biochim Biophys Sin (Shanghai)41:352–361 [CrossRef][PubMed]
    [Google Scholar]
  42. Sundar S., McGinness K. E., Baker T. A., Sauer R. T.. ( 2010;). Multiple sequence signals direct recognition and degradation of protein substrates by the AAA+ protease HslUV. J Mol Biol403:420–429 [CrossRef][PubMed]
    [Google Scholar]
  43. Tang Y. T., Hu T., Arterburn M., Boyle B., Bright J. M., Emtage P. C., Funk W. D.. ( 2005;). PAQR proteins: a novel membrane receptor family defined by an ancient 7-transmembrane pass motif. J Mol Evol61:372–380 [CrossRef][PubMed]
    [Google Scholar]
  44. Taranto M. P., Fernández Murga M. L., Lorca G., de Valdez G. F.. ( 2003;). Bile salts and cholesterol induce changes in the lipid cell membrane of Lactobacillus reuteri . J Appl Microbiol95:86–91 [CrossRef][PubMed]
    [Google Scholar]
  45. Taranto M. P., Pérez-Martinez G., Font de Valdez G.. ( 2006;). Effect of bile acid on the cell membrane functionality of lactic acid bacteria for oral administration. Res Microbiol157:720–725 [CrossRef][PubMed]
    [Google Scholar]
  46. Vandesompele J., De Preter K., Pattyn F., Poppe B., Van Roy N., De Paepe A., Speleman F.. ( 2002;). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol3:RESEARCH0034 [CrossRef][PubMed]
    [Google Scholar]
  47. Veyrat A., Monedero V., Pérez-Martínez G.. ( 1994;). Glucose transport by the phosphoenolpyruvate : mannose phosphotransferase system in Lactobacillus casei ATCC 393 and its role in carbon catabolite repression. Microbiology140:1141–1149 [CrossRef][PubMed]
    [Google Scholar]
  48. Vila-Sanjurjo A., Schuwirth B. S., Hau C. W., Cate J. H.. ( 2004;). Structural basis for the control of translation initiation during stress. Nat Struct Mol Biol11:1054–1059 [CrossRef][PubMed]
    [Google Scholar]
  49. Whitehead K., Versalovic J., Roos S., Britton R. A.. ( 2008;). Genomic and genetic characterization of the bile stress response of probiotic Lactobacillus reuteri ATCC 55730. Appl Environ Microbiol74:1812–1819 [CrossRef][PubMed]
    [Google Scholar]
  50. Winkler W. C., Nahvi A., Roth A., Collins J. A., Breaker R. R.. ( 2004;). Control of gene expression by a natural metabolite-responsive ribozyme. Nature428:281–286 [CrossRef][PubMed]
    [Google Scholar]
  51. Wu R., Sun Z., Wu J., Meng H., Zhang H.. ( 2010;). Effect of bile salts stress on protein synthesis of Lactobacillus casei Zhang revealed by 2-dimensional gel electrophoresis. J Dairy Sci93:3858–3868 [CrossRef][PubMed]
    [Google Scholar]
  52. Wu R., Zhang W., Sun T., Wu J., Yue X., Meng H., Zhang H.. ( 2011;). Proteomic analysis of responses of a new probiotic bacterium Lactobacillus casei Zhang to low acid stress. Int J Food Microbiol147:181–187 [CrossRef][PubMed]
    [Google Scholar]
  53. Yebra M. J., Monedero V., Zúñiga M., Deutscher J., Pérez-Martínez G.. ( 2006;). Molecular analysis of the glucose-specific phosphoenolpyruvate : sugar phosphotransferase system from Lactobacillus casei and its links with the control of sugar metabolism. Microbiology152:95–104 [CrossRef][PubMed]
    [Google Scholar]
  54. Young K. D.. ( 2010;). Bacterial shape: two-dimensional questions and possibilities. Annu Rev Microbiol64:223–240 [CrossRef][PubMed]
    [Google Scholar]
  55. Zúñiga M., Miralles Md M. C., Pérez-Martínez G.. ( 2002;). The product of arcR, the sixth gene of the arc operon of Lactobacillus sakei, is essential for expression of the arginine deiminase pathway. Appl Environ Microbiol68:6051–6058 [CrossRef][PubMed]
    [Google Scholar]
  56. Zúñiga M., Gómez-Escoín C. L., González-Candelas F.. ( 2011;). Evolutionary history of the OmpR/IIIA family of signal transduction two component systems in Lactobacillaceae and Leuconostocaceae . BMC Evol Biol11:34 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.055657-0
Loading
/content/journal/micro/10.1099/mic.0.055657-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error