1887

Abstract

Enterococci constitute a significant component of the lactic acid bacteria normally present in the intestinal microflora and include strains that produce bacteriocins. The genetic determinants for durancin GL in 41D were identified on the 8347 bp plasmid pDGL1 by plasmid curing experiments. pDGL1 contained nine putative ORFs, with ORF1 and ORF2 encoding plasmid replication proteins, and ORF3 and ORF6 showing high similarity to genes encoding mobilization proteins. The predicted protein encoded by ORF4 showed 74 % identity to BacA, a bacteriocin produced by The deduced DurA protein contained the conserved motif YYGNG, suggesting that durancin GL is a typical subclass IIa bacteriocin. ORF5 was shown to share 85 % identity to the immunity protein BacB of ORF9 displayed 87 % sequence identity to a conserved hypothetical protein of unknown function. To further clarify the minimum requirement for durancin GL production, a 547 bp fragment containing the gene was fitted with the P promoter and then subcloned and heterologously expressed in ST128. The result demonstrated that the cloned fragment contained all the genetic components required for durancin GL production.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.055624-0
2012-06-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/6/1523.html?itemId=/content/journal/micro/10.1099/mic.0.055624-0&mimeType=html&fmt=ahah

References

  1. Axelsson L. , Holck A. . ( 1995; ). The genes involved in production of and immunity to sakacin A, a bacteriocin from Lactobacillus sake Lb706. . J Bacteriol 177:, 2125–2137.[PubMed]
    [Google Scholar]
  2. Baba T. , Kuwahara-Arai K. , Uchiyama I. , Takeuchi F. , Ito T. , Hiramatsu K. . ( 2009; ). Complete genome sequence of Macrococcus caseolyticus strain JCSCS5402, [corrected] reflecting the ancestral genome of the human-pathogenic staphylococci. . J Bacteriol 191:, 1180–1190. [CrossRef] [PubMed]
    [Google Scholar]
  3. Bendtsen J. D. , Nielsen H. , von Heijne G. , Brunak S. . ( 2004; ). Improved prediction of signal peptides: SignalP 3.0. . J Mol Biol 340:, 783–795. [CrossRef] [PubMed]
    [Google Scholar]
  4. Bhunia A. K. , Johnson M. C. , Ray B. . ( 1987; ). Direct detection of an antimicrobial peptide of Pediococcus acidilactici in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. . J Ind Microbiol Biotechnol 2:, 319–322.
    [Google Scholar]
  5. Birri D. J. , Brede D. A. , Forberg T. , Holo H. , Nes I. F. . ( 2010; ). Molecular and genetic characterization of a novel bacteriocin locus in Enterococcus avium isolates from infants. . Appl Environ Microbiol 76:, 483–492. [CrossRef] [PubMed]
    [Google Scholar]
  6. Cintas L. M. , Casaus P. , Holo H. , Hernández P. E. , Nes I. F. , Håvarstein L. S. . ( 1998; ). Enterocins L50A and L50B, two novel bacteriocins from Enterococcus faecium L50, are related to staphylococcal hemolysins. . J Bacteriol 180:, 1988–1994.[PubMed]
    [Google Scholar]
  7. Cleveland J. , Montville T. J. , Nes I. F. , Chikindas M. L. . ( 2001; ). Bacteriocins: safe, natural antimicrobials for food preservation. . Int J Food Microbiol 71:, 1–20. [CrossRef] [PubMed]
    [Google Scholar]
  8. Coderre P. E. , Somkuti G. A. . ( 1999; ). Cloning and expression of the pediocin operon in Streptococcus thermophilus and other lactic fermentation bacteria. . Curr Microbiol 39:, 295–301. [CrossRef] [PubMed]
    [Google Scholar]
  9. Criado R. , Diep D. B. , Aakra A. , Gutiérrez J. , Nes I. F. , Hernández P. E. , Cintas L. M. . ( 2006; ). Complete sequence of the enterocin Q-encoding plasmid pCIZ2 from the multiple bacteriocin producer Enterococcus faecium L50 and genetic characterization of enterocin Q production and immunity. . Appl Environ Microbiol 72:, 6653–6666. [CrossRef] [PubMed]
    [Google Scholar]
  10. Dayem M. A. , Fleury Y. , Devilliers G. , Chaboisseau E. , Girard R. , Nicolas P. , Delfour A. . ( 1996; ). The putative immunity protein of the Gram-positive bacteria Leuconostoc mesenteroides is preferentially located in the cytoplasm compartment. . FEMS Microbiol Lett 138:, 251–259. [CrossRef] [PubMed]
    [Google Scholar]
  11. De Kwaadsteniet M. , Fraser T. , Van Reenen C. A. , Dicks L. M. . ( 2006; ). Bacteriocin T8, a novel class IIa sec-dependent bacteriocin produced by Enterococcus faecium T8, isolated from vaginal secretions of children infected with human immunodeficiency virus. . Appl Environ Microbiol 72:, 4761–4766. [CrossRef] [PubMed]
    [Google Scholar]
  12. De Vuyst L. , Foulquié Moreno M. R. , Revets H. . ( 2003; ). Screening for enterocins and detection of hemolysin and vancomycin resistance in enterococci of different origins. . Int J Food Microbiol 84:, 299–318. [CrossRef] [PubMed]
    [Google Scholar]
  13. Diep D. B. , Nes I. F. . ( 2002; ). Ribosomally synthesized antibacterial peptides in Gram positive bacteria. . Curr Drug Targets 3:, 107–122. [CrossRef] [PubMed]
    [Google Scholar]
  14. Dimov S. , Ivanova P. , Harizanova N. . ( 2005; ). Genetics of bacteriocins biosynthesis by lactic acid bacteria. . Biotechnol & Biotechnol Eq 19:, 4–10.[CrossRef]
    [Google Scholar]
  15. Du L. H. , Somkuti G. A. , Renye J. A. Jr , Huo G. . ( 2012; ). Properties of durancin GL, a new antilisterial bacteriocin produced by Enterococcus durans 41D. . J Food Saf 32:, 74–83. [CrossRef]
    [Google Scholar]
  16. Ennahar S. , Sashihara T. , Sonomoto K. , Ishizaki A. . ( 2000; ). Class IIa bacteriocins: biosynthesis, structure and activity. . FEMS Microbiol Rev 24:, 85–106. [CrossRef] [PubMed]
    [Google Scholar]
  17. Fimland G. , Eijsink V. G. , Nissen-Meyer J. . ( 2002; ). Comparative studies of immunity proteins of pediocin-like bacteriocins. . Microbiology 148:, 3661–3670.[PubMed]
    [Google Scholar]
  18. Fimland G. , Johnsen L. , Dalhus B. , Nissen-Meyer J. . ( 2005; ). Pediocin-like antimicrobial peptides (class IIa bacteriocins) and their immunity proteins: biosynthesis, structure, and mode of action. . J Pept Sci 11:, 688–696. [CrossRef] [PubMed]
    [Google Scholar]
  19. Francia M. V. , Varsaki A. , Garcillán-Barcia M. P. , Latorre A. , Drainas C. , de la Cruz F. . ( 2004; ). A classification scheme for mobilization regions of bacterial plasmids. . FEMS Microbiol Rev 28:, 79–100. [CrossRef] [PubMed]
    [Google Scholar]
  20. Gilbreth S. E. , Somkuti G. A. . ( 2005; ). Thermophilin 110: a bacteriocin of Streptococcus thermophilus ST110. . Curr Microbiol 51:, 175–182. [CrossRef] [PubMed]
    [Google Scholar]
  21. Håvarstein L. S. , Diep D. B. , Nes I. F. . ( 1995; ). A family of bacteriocin ABC transporters carry out proteolytic processing of their substrates concomitant with export. . Mol Microbiol 16:, 229–240. [CrossRef] [PubMed]
    [Google Scholar]
  22. Henderson J. T. , Chopko A. L. , van Wassenaar P. D. . ( 1992; ). Purification and primary structure of pediocin PA-1 produced by Pediococcus acidilactici PAC-1.0. . Arch Biochem Biophys 295:, 5–12. [CrossRef] [PubMed]
    [Google Scholar]
  23. Herranz C. , Driessen A. J. . ( 2005; ). Sec-mediated secretion of bacteriocin enterocin P by Lactococcus lactis . . Appl Environ Microbiol 71:, 1959–1963. [CrossRef] [PubMed]
    [Google Scholar]
  24. Hols P. , Hancy F. , Fontaine L. , Grossiord B. , Prozzi D. , Leblond-Bourget N. , Decaris B. , Bolotin A. , Delorme C. et al. ( 2005; ). New insights in the molecular biology and physiology of Streptococcus thermophilus revealed by comparative genomics. . FEMS Microbiol Rev 29:, 435–463.[PubMed]
    [Google Scholar]
  25. Hühne K. , Axelsson L. , Holck A. , Kröckel L. . ( 1996; ). Analysis of the sakacin P gene cluster from Lactobacillus sake Lb674 and its expression in sakacin-negative Lb. sake strains. . Microbiology 142:, 1437–1448. [CrossRef] [PubMed]
    [Google Scholar]
  26. Jack R. W. , Tagg J. R. , Ray B. . ( 1995; ). Bacteriocins of Gram-positive bacteria. . Microbiol Rev 59:, 171–200.[PubMed]
    [Google Scholar]
  27. Jaworski D. D. , Clewell D. B. . ( 1995; ). A functional origin of transfer (oriT) on the conjugative transposon Tn916 . . J Bacteriol 177:, 6644–6651.[PubMed]
    [Google Scholar]
  28. Johnsen L. , Fimland G. , Mantzilas D. , Nissen-Meyer J. . ( 2004; ). Structure–function analysis of immunity proteins of pediocin-like bacteriocins: C-terminal parts of immunity proteins are involved in specific recognition of cognate bacteriocins. . Appl Environ Microbiol 70:, 2647–2652. [CrossRef] [PubMed]
    [Google Scholar]
  29. Kalmokoff M. L. , Banerjee S. K. , Cyr T. , Hefford M. A. , Gleeson T. . ( 2001; ). Identification of a new plasmid-encoded sec-dependent bacteriocin produced by Listeria innocua 743. . Appl Environ Microbiol 67:, 4041–4047. [CrossRef] [PubMed]
    [Google Scholar]
  30. Kawamoto S. , Shima J. , Sato R. , Eguchi T. , Ohmomo S. , Shibato J. , Horikoshi N. , Takeshita K. , Sameshima T. . ( 2002; ). Biochemical and genetic characterization of mundticin KS, an antilisterial peptide produced by Enterococcus mundtii NFRI 7393. . Appl Environ Microbiol 68:, 3830–3840. [CrossRef] [PubMed]
    [Google Scholar]
  31. Kayser F. H. . ( 2003; ). Safety aspects of enterococci from the medical point of view. . Int J Food Microbiol 88:, 255–262. [CrossRef] [PubMed]
    [Google Scholar]
  32. Lempiäinen H. , Kinnunen K. , Mertanen A. , von Wright A. . ( 2005; ). Occurrence of virulence factors among human intestinal enterococcal isolates. . Lett Appl Microbiol 41:, 341–344. [CrossRef] [PubMed]
    [Google Scholar]
  33. Nes I. F. , Diep D. B. , Håvarstein L. S. , Brurberg M. B. , Eijsink V. , Holo H. . ( 1996; ). Biosynthesis of bacteriocins in lactic acid bacteria. . Antonie van Leeuwenhoek 70:, 113–128. [CrossRef] [PubMed]
    [Google Scholar]
  34. Nissen-Meyer J. , Nes I. F. . ( 1997; ). Ribosomally synthesized antimicrobial peptides: their function, structure, biogenesis, and mechanism of action. . Arch Microbiol 167:, 67–77. [CrossRef]
    [Google Scholar]
  35. Nissen-Meyer J. , Rogne P. , Oppegård C. , Haugen H. S. , Kristiansen P. E. . ( 2009; ). Structure-function relationships of the non-lanthionine-containing peptide (class II) bacteriocins produced by Gram-positive bacteria. . Curr Pharm Biotechnol 10:, 19–37. [CrossRef] [PubMed]
    [Google Scholar]
  36. O’Sullivan D. J. , Klaenhammer T. R. . ( 1993; ). Rapid mini-prep isolation of high-quality plasmid DNA from Lactococcus and Lactobacillus spp. . Appl Environ Microbiol 59:, 2730–2733.[PubMed]
    [Google Scholar]
  37. Papagianni M. . ( 2003; ). Ribosomally synthesized peptides with antimicrobial properties: biosynthesis, structure, function, and applications. . Biotechnol Adv 21:, 465–499. [CrossRef] [PubMed]
    [Google Scholar]
  38. Quadri L. E. N. , Sailer M. , Terebiznik M. R. , Roy K. L. , Vederas J. C. , Stiles M. E. . ( 1995; ). Characterization of the protein conferring immunity to the antimicrobial peptide carnobacteriocin B2 and expression of carnobacteriocins B2 and BM1. . J Bacteriol 177:, 1144–1151.[PubMed]
    [Google Scholar]
  39. Quadri L. E. N. , Kleerebezem M. , Kuipers O. P. , de Vos W. M. , Roy K. L. , Vederas J. C. , Stiles M. E. . ( 1997; ). Characterization of a locus from Carnobacterium piscicola LV17B involved in bacteriocin production and immunity: evidence for global inducer-mediated transcriptional regulation. . J Bacteriol 179:, 6163–6171.[PubMed]
    [Google Scholar]
  40. Renye J. A. Jr , Somkuti G. A. , Paul M. , Van Hekken D. L. . ( 2009; ). Characterization of antilisterial bacteriocins produced by Enterococcus faecium and Enterococcus durans isolates from Hispanic-style cheeses. . J Ind Microbiol Biotechnol 36:, 261–268. [CrossRef] [PubMed]
    [Google Scholar]
  41. Sánchez J. , Diep D. B. , Herranz C. , Nes I. F. , Cintas L. M. , Hernández P. E. . ( 2007; ). Amino acid and nucleotide sequence, adjacent genes, and heterologous expression of hiracin JM79, a sec-dependent bacteriocin produced by Enterococcus hirae DCH5, isolated from Mallard ducks (Anas platyrhynchos). . FEMS Microbiol Lett 270:, 227–236. [CrossRef] [PubMed]
    [Google Scholar]
  42. Sánchez J. , Borrero J. , Gómez-Sala B. , Basanta A. , Herranz C. , Cintas L. M. , Hernández P. E. . ( 2008; ). Cloning and heterologous production of hiracin JM79, a Sec-dependent bacteriocin produced by Enterococcus hirae DCH5, in lactic acid bacteria and Pichia pastoris . . Appl Environ Microbiol 74:, 2471–2479. [CrossRef] [PubMed]
    [Google Scholar]
  43. Smith M. C. A. , Thomas C. D. . ( 2004; ). An accessory protein is required for relaxosome formation by small staphylococcal plasmids. . J Bacteriol 186:, 3363–3373. [CrossRef] [PubMed]
    [Google Scholar]
  44. Solaiman D. K. , Somkuti G. A. . ( 1993; ). Shuttle vectors developed from Streptococcus thermophilus native plasmid. . Plasmid 30:, 67–78. [CrossRef] [PubMed]
    [Google Scholar]
  45. Somkuti G. A. , Steinberg D. H. . ( 1988; ). Genetic transformation of Streptococcus thermophilus by electroporation. . Biochimie 70:, 579–585. [CrossRef] [PubMed]
    [Google Scholar]
  46. Stougaard P. , Molin S. . ( 1981; ). Vertical dye-buoyant density gradients for rapid analysis and preparation of plasmid DNA. . Anal Biochem 118:, 191–193. [CrossRef] [PubMed]
    [Google Scholar]
  47. Tomita H. , Fujimoto S. , Tanimoto K. , Ike Y. . ( 1996; ). Cloning and genetic organization of the bacteriocin 31 determinant encoded on the Enterococcus faecalis pheromone-responsive conjugative plasmid pYI17. . J Bacteriol 178:, 3585–3593.[PubMed]
    [Google Scholar]
  48. van Schaik W. , Top J. , Riley D. R. , Boekhorst J. , Vrijenhoek J. E. , Schapendonk C. M. , Hendrickx A. P. , Nijman I. J. , Bonten M. J. et al. ( 2010; ). Pyrosequencing-based comparative genome analysis of the nosocomial pathogen Enterococcus faecium and identification of a large transferable pathogenicity island. . BMC Genomics 11:, 239. [CrossRef] [PubMed]
    [Google Scholar]
  49. Venema K. , Kok J. , Marugg J. D. , Toonen M. Y. , Ledeboer A. M. , Venema G. , Chikindas M. L. . ( 1995; ). Functional analysis of the pediocin operon of Pediococcus acidilactici PAC1.0: PedB is the immunity protein and PedD is the precursor processing enzyme. . Mol Microbiol 17:, 515–522. [CrossRef] [PubMed]
    [Google Scholar]
  50. Venema K. , Dost M. H. , Beun P. A. , Haandrikman A. J. , Venema G. , Kok J. . ( 1996; ). The genes for secretion and maturation of lactococcins are located on the chromosome of Lactococcus lactis IL1403. . Appl Environ Microbiol 62:, 1689–1692.[PubMed]
    [Google Scholar]
  51. Wu J. , Hu S. , Cao L. . ( 2007; ). Therapeutic effect of nisin Z on subclinical mastitis in lactating cows. . Antimicrob Agents Chemother 51:, 3131–3135. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.055624-0
Loading
/content/journal/micro/10.1099/mic.0.055624-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error