The incongruent gelatinase genotype and phenotype in are due to shutting off the ability to respond to the gelatinase biosynthesis-activating pheromone (GBAP) quorum-sensing signal Free

Abstract

The concomitant presence of a complete quorum-sensing system and operons in is known to be essential for the detection of gelatinase activity. However, there are reports of the absence of gelatinase activity despite the presence of complete and loci. In order to understand this incongruence between genotype and phenotype we sequenced and loci of the LN68 strain, which was previously found to carry both operons but to lack gelatinase activity. Of the 59 nucleotide differences detected compared with the gelatinase-positive V583 strain, we found a nonsense mutation (a premature STOP codon) predicted to truncate the ATPase sensor domain of the FsrC protein, responsible for sensing and transducing the signal from the quorum-sensing molecule. Strain LN68 was highly affected in the expression of the and genes, further supporting the lack of Fsr-dependent induction. When we constructed a V583 mutant with the same premature stop mutation in the gene the resulting strain was no longer able to degrade gelatin. We conclude that the reduced ability to transduce the quorum-sensing signal of the prematurely truncated FsrC protein is sufficient to explain the negative gelatinase phenotype. As the incongruent genotype and phenotype is detected in natural isolates, we believe that the silencing of the quorum-sensing system Fsr may be beneficial for some strains.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.055574-0
2012-02-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/2/519.html?itemId=/content/journal/micro/10.1099/mic.0.055574-0&mimeType=html&fmt=ahah

References

  1. Bourgogne A., Hilsenbeck S. G., Dunny G. M., Murray B. E. ( 2006). Comparison of OG1RF and an isogenic fsrB deletion mutant by transcriptional analysis: the Fsr system of Enterococcus faecalis is more than the activator of gelatinase and serine protease. J Bacteriol 188:2875–2884 [View Article][PubMed]
    [Google Scholar]
  2. Braga T. M., Marujo P. E., Pomba C., Lopes M. F. ( 2011). Involvement, and dissemination, of the enterococcal small multidrug resistance transporter QacZ in resistance to quaternary ammonium compounds. J Antimicrob Chemother 66:283–286 [View Article][PubMed]
    [Google Scholar]
  3. Brinster S., Furlan S., Serror P. ( 2007). C-terminal WxL domain mediates cell wall binding in Enterococcus faecalis and other Gram-positive bacteria. J Bacteriol 189:1244–1253 [View Article][PubMed]
    [Google Scholar]
  4. Dower W. J., Miller J. F., Ragsdale C. W. ( 1988). High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res 16:6127–6145 [View Article][PubMed]
    [Google Scholar]
  5. Dunny G. M., Lee L. N., LeBlanc D. J. ( 1991). Improved electroporation and cloning vector system for Gram-positive bacteria. Appl Environ Microbiol 57:1194–1201[PubMed]
    [Google Scholar]
  6. Eaton T. J., Gasson M. J. ( 2001). Molecular screening of Enterococcus virulence determinants and potential for genetic exchange between food and medical isolates. Appl Environ Microbiol 67:1628–1635 [View Article][PubMed]
    [Google Scholar]
  7. Galloway-Peña J. R., Bourgogne A., Qin X., Murray B. E. ( 2011). Diversity of the fsr-gelE region of the Enterococcus faecalis genome but conservation in strains with partial deletions of the fsr operon. Appl Environ Microbiol 77:442–451 [View Article][PubMed]
    [Google Scholar]
  8. Gaspar F., Teixeira N., Rigottier-Gois L., Marujo P., Nielsen-LeRoux C., Crespo M. T., Lopes M. F., Serror P. ( 2009). Virulence of Enterococcus faecalis dairy strains in an insect model: the role of fsrB and gelE . Microbiology 155:3564–3571 [View Article][PubMed]
    [Google Scholar]
  9. Gilmore M. S., Coburn P. S., Nallapareddy S. R., Murray B. E. 2002; Enterococcal virulence. The Enterococci – Pathogenesis, Molecular Biology, and Antibiotic Resistance301–354 Gilmore M. S. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  10. Grant S. G., Jessee J., Bloom F. R., Hanahan D. ( 1990). Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. Proc Natl Acad Sci U S A 87:4645–4649 [View Article][PubMed]
    [Google Scholar]
  11. Hancock L. E., Perego M. ( 2004). The Enterococcus faecalis fsr two-component system controls biofilm development through production of gelatinase. J Bacteriol 186:5629–5639 [View Article][PubMed]
    [Google Scholar]
  12. Jha A. K., Bais H. P., Vivanco J. M. ( 2005). Enterococcus faecalis mammalian virulence-related factors exhibit potent pathogenicity in the Arabidopsis thaliana plant model. Infect Immun 73:464–475 [View Article][PubMed]
    [Google Scholar]
  13. Law J., Buist G., Haandrikman A., Kok J., Venema G., Leenhouts K. ( 1995). A system to generate chromosomal mutations in Lactococcus lactis which allows fast analysis of targeted genes. J Bacteriol 177:7011–7018[PubMed]
    [Google Scholar]
  14. Leenhouts K., Buist G., Bolhuis A., ten Berge A., Kiel J., Mierau I., Dabrowska M., Venema G., Kok J. ( 1996). A general system for generating unlabelled gene replacements in bacterial chromosomes. Mol Gen Genet 253:217–224 [View Article][PubMed]
    [Google Scholar]
  15. Lopes M. F., Pereira C. I., Rodrigues F. M., Martins M. P., Mimoso M. C., Barros T. C., Figueiredo Marques J. J., Tenreiro R. P., Almeida J. S., Barreto Crespo M. T. ( 1999). Registered designation of origin areas of fermented food products defined by microbial phenotypes and artificial neural networks. Appl Environ Microbiol 65:4484–4489[PubMed]
    [Google Scholar]
  16. Lopes M. F., Simões A. P., Tenreiro R., Marques J. J., Crespo M. T. ( 2006). Activity and expression of a virulence factor, gelatinase, in dairy enterococci. Int J Food Microbiol 112:208–214 [View Article][PubMed]
    [Google Scholar]
  17. Maguin E., Prévost H., Ehrlich S. D., Gruss A. ( 1996). Efficient insertional mutagenesis in lactococci and other Gram-positive bacteria. J Bacteriol 178:931–935[PubMed]
    [Google Scholar]
  18. Mäkinen P. L., Clewell D. B., An F., Mäkinen K. K. ( 1989). Purification and substrate specificity of a strongly hydrophobic extracellular metalloendopeptidase (“gelatinase”) from Streptococcus faecalis (strain 0G1-10). J Biol Chem 264:3325–3334[PubMed]
    [Google Scholar]
  19. Mohamed J. A., Murray B. E. ( 2006). Influence of the fsr locus on biofilm formation by Enterococcus faecalis lacking gelE . J Med Microbiol 55:1747–1750 [View Article][PubMed]
    [Google Scholar]
  20. Mundt J. O. ( 1986). Enterococci. Bergey’s Manual of Systematic Bacteriology1063–1065 Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  21. Nakayama J., Cao Y., Horii T., Sakuda S., Akkermans A. D., de Vos W. M., Nagasawa H. ( 2001a). Gelatinase biosynthesis-activating pheromone: a peptide lactone that mediates a quorum sensing in Enterococcus faecalis . Mol Microbiol 41:145–154 [View Article][PubMed]
    [Google Scholar]
  22. Nakayama J., Cao Y., Horii T., Sakuda S., Nagasawa H. ( 2001b). Chemical synthesis and biological activity of the gelatinase biosynthesis-activating pheromone of Enterococcus faecalis and its analogs. Biosci Biotechnol Biochem 65:2322–2325 [View Article][PubMed]
    [Google Scholar]
  23. Nakayama J., Kariyama R., Kumon H. ( 2002). Description of a 23.9-kilobase chromosomal deletion containing a region encoding fsr genes which mainly determines the gelatinase-negative phenotype of clinical isolates of Enterococcus faecalis in urine. Appl Environ Microbiol 68:3152–3155 [View Article][PubMed]
    [Google Scholar]
  24. Ogier J. C., Serror P. ( 2007). Safety assessment of dairy microorganisms: the Enterococcus genus. Int J Food Microbiol 126:291–301 [View Article][PubMed]
    [Google Scholar]
  25. Park S. Y., Kim K. M., Lee J. H., Seo S. J., Lee I. H. ( 2007). Extracellular gelatinase of Enterococcus faecalis destroys a defense system in insect hemolymph and human serum. Infect Immun 75:1861–1869 [View Article][PubMed]
    [Google Scholar]
  26. Park S. Y., Shin Y. P., Kim C. H., Park H. J., Seong Y. S., Kim B. S., Seo S. J., Lee I. H. ( 2008). Immune evasion of Enterococcus faecalis by an extracellular gelatinase that cleaves C3 and iC3b. J Immunol 181:6328–6336[PubMed] [CrossRef]
    [Google Scholar]
  27. Parkinson J. S., Kofoid E. C. ( 1992). Communication modules in bacterial signaling proteins. Annu Rev Genet 26:71–112 [View Article][PubMed]
    [Google Scholar]
  28. Qin X., Singh K. V., Weinstock G. M., Murray B. E. ( 2000). Effects of Enterococcus faecalis fsr genes on production of gelatinase and a serine protease and virulence. Infect Immun 68:2579–2586 [View Article][PubMed]
    [Google Scholar]
  29. Que Y. A., Haefliger J. A., Francioli P., Moreillon P. ( 2000). Expression of Staphylococcus aureus clumping factor A in Lactococcus lactis subsp. cremoris using a new shuttle vector. Infect Immun 68:3516–3522 [View Article][PubMed]
    [Google Scholar]
  30. Sahm D. F., Kissinger J., Gilmore M. S., Murray P. R., Mulder R., Solliday J., Clarke B. ( 1989). In vitro susceptibility studies of vancomycin-resistant Enterococcus faecalis . Antimicrob Agents Chemother 33:1588–1591[PubMed] [CrossRef]
    [Google Scholar]
  31. Sambrook J., Fritsch E. F., Maniatis T. ( 1989). Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  32. Sifri C. D., Mylonakis E., Singh K. V., Qin X., Garsin D. A., Murray B. E., Ausubel F. M., Calderwood S. B. ( 2002). Virulence effect of Enterococcus faecalis protease genes and the quorum-sensing locus fsr in Caenorhabditis elegans and mice. Infect Immun 70:5647–5650 [View Article][PubMed]
    [Google Scholar]
  33. Steck N., Hoffmann M., Sava I. G., Kim S. C., Hahne H., Tonkonogy S. L., Mair K., Krueger D., Pruteanu M. & other authors ( 2011). Enterococcus faecalis metalloprotease compromises epithelial barrier and contributes to intestinal inflammation. Gastroenterology 141:959–971 [View Article][PubMed]
    [Google Scholar]
  34. Su Y. A., Sulavik M. C., He P., Makinen K. K., Makinen P. L., Fiedler S., Wirth R., Clewell D. B. ( 1991). Nucleotide sequence of the gelatinase gene (gelE) from Enterococcus faecalis subsp. liquefaciens . Infect Immun 59:415–420[PubMed]
    [Google Scholar]
  35. Thomas V. C., Thurlow L. R., Boyle D., Hancock L. E. ( 2008). Regulation of autolysis-dependent extracellular DNA release by Enterococcus faecalis extracellular proteases influences biofilm development. J Bacteriol 190:5690–5698 [View Article][PubMed]
    [Google Scholar]
  36. Thomas V. C., Hiromasa Y., Harms N., Thurlow L., Tomich J., Hancock L. E. ( 2009). A fratricidal mechanism is responsible for eDNA release and contributes to biofilm development of Enterococcus faecalis . Mol Microbiol 72:1022–1036 [View Article][PubMed]
    [Google Scholar]
  37. Thurlow L. R., Thomas V. C., Hancock L. E. ( 2009). Capsular polysaccharide production in Enterococcus faecalis and contribution of CpsF to capsule serospecificity. J Bacteriol 191:6203–6210 [View Article][PubMed]
    [Google Scholar]
  38. Vebø H. C., Snipen L., Nes I. F., Brede D. A. ( 2009). The transcriptome of the nosocomial pathogen Enterococcus faecalis V583 reveals adaptive responses to growth in blood. PLoS ONE 4:e7660 [View Article][PubMed]
    [Google Scholar]
  39. Vebø H. C., Solheim M., Snipen L., Nes I. F., Brede D. A. ( 2010). Comparative genomic analysis of pathogenic and probiotic Enterococcus faecalis isolates, and their transcriptional responses to growth in human urine. PLoS ONE 5:e12489 [View Article][PubMed]
    [Google Scholar]
  40. Yan X., Zhao C., Budin-Verneuil A., Hartke A., Rincé A., Gilmore M. S., Auffray Y., Pichereau V. ( 2009). The (p)ppGpp synthetase RelA contributes to stress adaptation and virulence in Enterococcus faecalis V583. Microbiology 155:3226–3237 [CrossRef]
    [Google Scholar]
  41. Zhu Y., Inouye M. ( 2002). The role of the G2 box, a conserved motif in the histidine kinase superfamily, in modulating the function of EnvZ. Mol Microbiol 45:653–663 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.055574-0
Loading
/content/journal/micro/10.1099/mic.0.055574-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed