1887

Abstract

are characterized by the presence of long-chain lipids, notably mycolic acids (α-alkyl, β-hydroxy fatty acids), the structures of which are genus-specific. Mycolic acids from two environmental strains, and , were isolated and their structures were established using a combination of mass spectrometry analysis, H-NMR spectroscopy and chemical degradations. The C–C cleavage of these C–C acids led to the formation of two fragments: saturated C–C acids, and saturated and unsaturated C–C aldehydes. Surprisingly, the fatty acids at the origin of the two fragments making up these mycolic acids were present in only minute amounts in the fatty acid pool. Moreover, the double bond in the main C aldehyde fragment was located at position ω16, whereas that found in the ethylenic fatty acids of the bacteria was at ω9. These data question the biosynthesis of these new mycolic acids in terms of the nature of the precursors, chain elongation and desaturation. Nevertheless, they are consistent with the occurrence of the key genes of mycolic acid biosynthesis, including those encoding proteins of the fatty acid synthase II system, identified in the genome of . Altogether, while the presence of mycolic acids and analysis of their 16S rDNA sequences would suggest that these strains belong to the family, the originality of their structures reinforces the recent description of the novel genera and .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.055509-0
2012-03-01
2020-08-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/3/843.html?itemId=/content/journal/micro/10.1099/mic.0.055509-0&mimeType=html&fmt=ahah

References

  1. Adachi K., Katsuta A., Matsuda S., Peng X., Misawa N., Shizuri Y., Kroppenstedt R. M., Yokota A., Kasai H.. ( 2007;). Smaragdicoccus niigatensis gen. nov., sp. nov., a novel member of the suborder Corynebacterineae . Int J Syst Evol Microbiol57:297–301 [CrossRef][PubMed]
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. ( 1997;). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402 [CrossRef][PubMed]
    [Google Scholar]
  3. Asselineau C., Tocanne G., Tocanne J. F.. ( 1970;). [Stéréochimie des acides mycoliques]. Bull Soc Chim Fr4:1992–1996
    [Google Scholar]
  4. Asselineau C., Asselineau J., Lanéelle G., Lanéelle M. A.. ( 2002;). The biosynthesis of mycolic acids by Mycobacteria: current and alternative hypotheses. Prog Lipid Res41:501–523 [CrossRef][PubMed]
    [Google Scholar]
  5. Barry C. E. III, Lee R. E., Mdluli K., Sampson A. E., Schroeder B. G., Slayden R. A., Yuan Y.. ( 1998;). Mycolic acids: structure, biosynthesis and physiological functions. Prog Lipid Res37:143–179 [CrossRef][PubMed]
    [Google Scholar]
  6. Bordet C., Michel G.. ( 1969;). [Structure and biogenesis of high molecular weight lipids from Nocardia asteroides]. Bull Soc Chim Biol (Paris)51:527–548[PubMed]
    [Google Scholar]
  7. Butler W. R., Floyd M. M., Brown J. M., Toney S. R., Daneshvar M. I., Cooksey R. C., Carr J., Steigerwalt A. G., Charles N.. ( 2005;). Novel mycolic acid-containing bacteria in the family Segniliparaceae fam. nov., including the genus Segniliparus gen. nov., with descriptions of Segniliparus rotundus sp. nov. and Segniliparus rugosus sp. nov. Int J Syst Evol Microbiol55:1615–1624 [CrossRef][PubMed]
    [Google Scholar]
  8. Cai M., Chen W. M., Nie Y., Chi C. Q., Wang Y. N., Tang Y. Q., Li G. Y., Wu X. L.. ( 2011;). Complete genome sequence of Amycolicicoccus subflavus DQS3-9A1T, an actinomycete isolated from crude oil-polluted soil. J Bacteriol193:4538–4539 [CrossRef][PubMed]
    [Google Scholar]
  9. Chun J., Blackall L. L., Kang S. O., Hah Y. C., Goodfellow M.. ( 1997;). A proposal to reclassify Nocardia pinensis Blackall et al. as Skermania piniformis gen. nov., comb. nov. Int J Syst Bacteriol47:127–131 [CrossRef][PubMed]
    [Google Scholar]
  10. Cole S. T., Brosch R., Parkhill J., Garnier T., Churcher C., Harris D., Gordon S. V., Eiglmeier K., Gas S.. & other authors ( 1998;). Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature393:537–544 [CrossRef][PubMed]
    [Google Scholar]
  11. Collins M. D., Goodfellow M., Minnikin D. E.. ( 1982;). A survey of the structures of mycolic acids in Corynebacterium and related taxa. J Gen Microbiol128:129–149[PubMed]
    [Google Scholar]
  12. Daffé M., Lanéelle M. A., Asselineau C., Lévy-Frébault V., David H.. ( 1983;). Intérêt taxonomique des acides gras des mycobactéries: proposition d’une méthode d’analyse. Ann Microbiol134B:241–256
    [Google Scholar]
  13. Daffé M., Lanéelle M. A., Valero Guillen P. L.. ( 1988;). Tetraenoic and pentaenoic mycolic acids from Mycobacterium thamnopheos. Structure, taxonomic and biosynthetic implications. Eur J Biochem177:339–344 [CrossRef][PubMed]
    [Google Scholar]
  14. De Sousa-D’Auria C., Kacem R., Puech V., Tropis M., Leblon G., Houssin C., Daffé M.. ( 2003;). New insights into the biogenesis of the cell envelope of corynebacteria: identification and functional characterization of five new mycoloyltransferase genes in Corynebacterium glutamicum . FEMS Microbiol Lett224:35–44 [CrossRef][PubMed]
    [Google Scholar]
  15. Etemadi A. H.. ( 1967a;). The use of pyrolysis gas chromatography and mass spectrometry in the study of the structure of mycolic acids. J Gas Chromatogr5:447–456[CrossRef]
    [Google Scholar]
  16. Etémadi A. H.. ( 1967b;). [Mycolic acids. Structure, biogenesis and phylogenetic value]. Expos Annu Biochim Med28:77–109[PubMed]
    [Google Scholar]
  17. Etemadi A. H.. ( 1967;c). Isomerisation de mycolates de méthyle en milieu alcalin. Chem Phys Lipids1:165–175 [CrossRef]
    [Google Scholar]
  18. Etemadi A. H., Lederer E.. ( 1965;). [On biogenesis of nocardic acids by Nocardia asteroides]. Bull Soc Chim Biol (Paris)47:107–113[PubMed]
    [Google Scholar]
  19. Hoffmann C., Leis A., Niederweis M., Plitzko J. M., Engelhardt H.. ( 2008;). Disclosure of the mycobacterial outer membrane: cryo-electron tomography and vitreous sections reveal the lipid bilayer structure. Proc Natl Acad Sci U S A105:3963–3967 [CrossRef][PubMed]
    [Google Scholar]
  20. Hsu F. F., Soehl K., Turk J., Haas A.. ( 2011;). Characterization of mycolic acids from the pathogen Rhodococcus equi by tandem mass spectrometry with electrospray ionization. Anal Biochem409:112–122 [CrossRef][PubMed]
    [Google Scholar]
  21. Ishikawa J., Yamashita A., Mikami Y., Hoshino Y., Kurita H., Hotta K., Shiba T., Hattori M.. ( 2004;). The complete genomic sequence of Nocardia farcinica IFM 10152. Proc Natl Acad Sci U S A101:14925–14930 [CrossRef][PubMed]
    [Google Scholar]
  22. Jurado V., Kroppenstedt R. M., Saiz-Jimenez C., Klenk H. P., Mouniée D., Laiz L., Couble A., Pötter G., Boiron P., Rodríguez-Nava V.. ( 2009;). Hoyosella altamirensis gen. nov., sp. nov., a new member of the order Actinomycetales isolated from a cave biofilm. Int J Syst Evol Microbiol59:3105–3110 [CrossRef][PubMed]
    [Google Scholar]
  23. Kalinowski J., Bathe B., Bartels D., Bischoff N., Bott M., Burkovski A., Dusch N., Eggeling L., Eikmanns B. J.. & other authors ( 2003;). The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. J Biotechnol104:5–25 [CrossRef][PubMed]
    [Google Scholar]
  24. Kanemasa Y., Goldman D. S.. ( 1965;). Direct incorporation of octanoate into long-chain fatty acids by soluble enzymes of Mycobacterium tuberculosis . Biochim Biophys Acta98:476–485[PubMed][CrossRef]
    [Google Scholar]
  25. Laval F., Lanéelle M. A., Déon C., Monsarrat B., Daffé M.. ( 2001;). Accurate molecular mass determination of mycolic acids by MALDI-TOF mass spectrometry. Anal Chem73:4537–4544 [CrossRef][PubMed]
    [Google Scholar]
  26. Marrakchi H., Bardou F., Lanéelle M. A., Daffé M.. ( 2008;). A comprehensive overview of mycolic acid structure and biosynthesis. The Mycobacterial Cell Envelope41–62 Daffé M., Reyrat J.-M.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  27. Nishiuchi Y., Baba T., Hotta H. H., Yano I.. ( 1999;). Mycolic acid analysis in Nocardia species. The mycolic acid compositions of Nocardia asteroides, N. farcinica, and N. nova . J Microbiol Methods37:111–122 [CrossRef][PubMed]
    [Google Scholar]
  28. Nishiuchi Y., Baba T., Yano I.. ( 2000;). Mycolic acids from Rhodococcus, Gordonia, and Dietzia . J Microbiol Methods40:1–9 [CrossRef][PubMed]
    [Google Scholar]
  29. Odham G., Stenhagen E.. ( 1972;). Fatty acids. Biochemical Applications of Mass Spectrometry211–228 Waller G. R.. New York: Willey-Interscience;
    [Google Scholar]
  30. Portevin D., De Sousa-D’Auria C., Houssin C., Grimaldi C., Chami M., Daffé M., Guilhot C.. ( 2004;). A polyketide synthase catalyzes the last condensation step of mycolic acid biosynthesis in mycobacteria and related organisms. Proc Natl Acad Sci U S A101:314–319 [CrossRef][PubMed]
    [Google Scholar]
  31. Portevin D., de Sousa-D’Auria C., Montrozier H., Houssin C., Stella A., Lanéelle M. A., Bardou F., Guilhot C., Daffé M.. ( 2005;). The acyl-AMP ligase FadD32 and AccD4-containing acyl-CoA carboxylase are required for the synthesis of mycolic acids and essential for mycobacterial growth: identification of the carboxylation product and determination of the acyl-CoA carboxylase components. J Biol Chem280:8862–8874 [CrossRef][PubMed]
    [Google Scholar]
  32. Radmacher E., Alderwick L. J., Besra G. S., Brown A. K., Gibson K. J. C., Sahm H., Eggeling L.. ( 2005;). Two functional FAS-I type fatty acid synthases in Corynebacterium glutamicum . Microbiology151:2421–2427 [CrossRef][PubMed]
    [Google Scholar]
  33. Ratledge C.. ( 1976;). The physiology of the mycobacteria. Adv Microb Physiol13:115–244 [CrossRef][PubMed]
    [Google Scholar]
  34. Sacco E., Covarrubias A. S., O’Hare H. M., Carroll P., Eynard N., Jones T. A., Parish T., Daffé M., Bäckbro K., Quémard A.. ( 2007;). The missing piece of the type II fatty acid synthase system from Mycobacterium tuberculosis . Proc Natl Acad Sci U S A104:14628–14633 [CrossRef][PubMed]
    [Google Scholar]
  35. Shui G., Bendt A. K., Pethe K., Dick T., Wenk M. R.. ( 2007;). Sensitive profiling of chemically diverse bioactive lipids. J Lipid Res48:1976–1984 [CrossRef][PubMed]
    [Google Scholar]
  36. Soddell J. A., Stainsby F. M., Eales K. L., Kroppenstedt R. M., Seviour R. J., Goodfellow M.. ( 2006;). Millisia brevis gen. nov., sp. nov., an actinomycete isolated from activated sludge foam. Int J Syst Evol Microbiol56:739–744 [CrossRef][PubMed]
    [Google Scholar]
  37. Tarnok I.. ( 1976;). Metabolism in Nocardiae and related bacteria. The Biology of the Nocardiae451–500 Goodfellow M., Brownell G. H., Serrano J. A.. London: Academic Press;
    [Google Scholar]
  38. Von Rudloff E.. ( 1956;). Periodate-permanganate oxidations V. Oxidation of lipids in media containing organic solvents. Can J Chem34:1413–1418 [CrossRef]
    [Google Scholar]
  39. Wang Y. N., Chi C. Q., Cai M., Lou Z. Y., Tang Y. Q., Zhi X. Y., Li W. J., Wu X. L., Du X.. ( 2010;). Amycolicicoccus subflavus gen. nov., sp. nov., an actinomycete isolated from a saline soil contaminated by crude oil. Int J Syst Evol Microbiol60:638–643 [CrossRef][PubMed]
    [Google Scholar]
  40. Welby-Gieusse M., Lanéelle M. A., Asselineau J.. ( 1970;). [Structure of the corynomycolic acids of Corynebacterium hofmanii and their biogenetic implication]. Eur J Biochem13:164–167 [CrossRef][PubMed]
    [Google Scholar]
  41. Yassin A. F., Hupfer H.. ( 2006;). Williamsia deligens sp. nov., isolated from human blood. Int J Syst Evol Microbiol56:193–197 [CrossRef][PubMed]
    [Google Scholar]
  42. Zhi X. Y., Li W. J., Stackebrandt E.. ( 2009;). An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. Int J Syst Evol Microbiol59:589–608 [CrossRef][PubMed]
    [Google Scholar]
  43. Zuber B., Chami M., Houssin C., Dubochet J., Griffiths G., Daffé M.. ( 2008;). Direct visualization of the outer membrane of mycobacteria and corynebacteria in their native state. J Bacteriol190:5672–5680 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.055509-0
Loading
/content/journal/micro/10.1099/mic.0.055509-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error