1887

Abstract

sp. NP5 can degrade a wide range of nonylphenol (NP) isomers that have widely contaminated aquatic environments as major endocrine-disrupting chemicals. To understand the biochemical and genetic backgrounds of NP degradation, a gene library of strain NP5 was constructed using a broad-host-range vector pBBR1MCS-2 and introduced into UT26. Several transformants accumulated reddish brown metabolites on agar plates dispersed with a mixture of NP isomers. Two different DNA fragments (7.6 and 9.3 kb) involved in the phenotype were isolated from the transformants. Sequence analysis revealed that both fragments contained an identical 1593 bp monooxygenase gene (), the predicted protein sequence of which showed 83 % identity to the octylphenol-4-monooxygenase of sp. PWE1. The gene in the 7.6 kb fragment was surrounded by an IS-type insertion sequence (IS) and IS, while another in the 9.3 kb fragment was adjacent to an IS-type IS, suggesting that they have been acquired through multiple transposition events. A fast-growing recombinant strain harbouring was constructed and used for degradation of a chemically synthesized NP isomer, 4-(1-ethyl-1-methylhexyl)phenol. This strain converted the isomer into hydroquinone stoichiometrically. 3-Methyl-3-octanol, probably originating from the alkyl side chain, was also detected as the metabolite. These results indicate that these two genes are involved in the NP degradation ability of strain NP5.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.055335-0
2012-07-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/7/1796.html?itemId=/content/journal/micro/10.1099/mic.0.055335-0&mimeType=html&fmt=ahah

References

  1. Ahel M., McEvoy J., Giger W.. ( 1993;). Bioaccumulation of the lipophilic metabolites of nonionic surfactants in freshwater organisms. Environ Pollut79:243–248 [CrossRef][PubMed]
    [Google Scholar]
  2. Bagdasarian M., Lurz R., Rückert B., Franklin F. C., Bagdasarian M. M., Frey J., Timmis K. N.. ( 1981;). Specific-purpose plasmid cloning vectors. II. Broad host range, high copy number, RSF1010-derived vectors, and a host-vector system for gene cloning in Pseudomonas . Gene16:237–247 [CrossRef][PubMed]
    [Google Scholar]
  3. Berger B., Haas D.. ( 2001;). Transposase and cointegrase: specialized transposition proteins of the bacterial insertion sequence IS21 and related elements. Cell Mol Life Sci58:403–419 [CrossRef][PubMed]
    [Google Scholar]
  4. Corti A., Frassinetti S., Vallini G., D’Antone S., Fichi C., Solaro R.. ( 1995;). Biodegradation of nonionic surfactants. I. Biotransformation of 4-(1-nonyl)phenol by a Candida maltosa isolate. Environ Pollut90:83–87 [CrossRef][PubMed]
    [Google Scholar]
  5. Corvini P. F. X., Meesters R. J. W., Schäffer A., Schröder H. F., Vinken R., Hollender J.. ( 2004;). Degradation of a nonylphenol single isomer by Sphingomonas sp. strain TTNP3 leads to a hydroxylation-induced migration product. Appl Environ Microbiol70:6897–6900 [CrossRef][PubMed]
    [Google Scholar]
  6. Corvini P. F. X., Hollender J., Ji R., Schumacher S., Prell J., Hommes G., Priefer U., Vinken R., Schäffer A.. ( 2006a;). The degradation of α-quaternary nonylphenol isomers by Sphingomonas sp. strain TTNP3 involves a type II ipso-substitution mechanism. Appl Microbiol Biotechnol70:114–122 [CrossRef][PubMed]
    [Google Scholar]
  7. Corvini P. F. X., Schäffer A., Schlosser D.. ( 2006b;). Microbial degradation of nonylphenol and other alkylphenols – our evolving view. Appl Microbiol Biotechnol72:223–243 [CrossRef][PubMed]
    [Google Scholar]
  8. de Vries Y. P., Takahara Y., Ikunaga Y., Ushiba Y., Hasegawa M., Kasahara Y., Shimomura H., Hayashi S., Hirai Y., Ohta H.. ( 2001;). Organic nutrient-dependent degradation of branched nonylphenol by Sphingomonas sp. YT isolated from a river sediment sample. Microbes Environ16:240–249 [CrossRef]
    [Google Scholar]
  9. DiMarco A. A., Averhoff B. A., Kim E. E., Ornston L. N.. ( 1993;). Evolutionary divergence of pobA, the structural gene encoding p-hydroxybenzoate hydroxylase in an Acinetobacter calcoaceticus strain well-suited for genetic analysis. Gene125:25–33 [CrossRef][PubMed]
    [Google Scholar]
  10. Ekelund R., Bergman A., Granmo A., Berggren M.. ( 1990;). Bioaccumulation of 4-nonylphenol in marine animals – a re-evaluation. Environ Pollut64:107–120[PubMed]
    [Google Scholar]
  11. Eppink M. H. M., Van Berkel W. J. H., Schreuder H. A.. ( 1997;). Identification of a novel conserved sequence motif in flavoprotein hydroxylases with a putative dual function in FAD/NAD(P)H binding. Protein Sci6:2454–2458 [CrossRef][PubMed]
    [Google Scholar]
  12. Ferrández A., Garciá J. L., Díaz E.. ( 1997;). Genetic characterization and expression in heterologous hosts of the 3-(3-hydroxyphenyl)propionate catabolic pathway of Escherichia coli K-12. J Bacteriol179:2573–2581[PubMed]
    [Google Scholar]
  13. Fujii K., Urano N., Ushio H., Satomi M., Iida H., Ushio-Sata N., Kimura S.. ( 2000;). Profile of a nonylphenol-degrading microflora and its potential for bioremedial applications. J Biochem128:909–916 [CrossRef][PubMed]
    [Google Scholar]
  14. Fujii K., Urano N., Ushio H., Satomi M., Kimura S.. ( 2001;). Sphingomonas cloacae sp. nov., a nonylphenol-degrading bacterium isolated from wastewater of a sewage-treatment plant in Tokyo. Int J Syst Evol Microbiol51:603–610[PubMed]
    [Google Scholar]
  15. Gabriel F. L., Giger W., Guenther K., Kohler H. P.. ( 2005a;). Differential degradation of nonylphenol isomers by Sphingomonas xenophaga Bayram. Appl Environ Microbiol71:1123–1129 [CrossRef][PubMed]
    [Google Scholar]
  16. Gabriel F. L., Heidlberger A., Rentsch D., Giger W., Guenther K., Kohler H. P.. ( 2005b;). A novel metabolic pathway for degradation of 4-nonylphenol environmental contaminants by Sphingomonas xenophaga Bayram: ipso-hydroxylation and intramolecular rearrangement. J Biol Chem280:15526–15533 [CrossRef][PubMed]
    [Google Scholar]
  17. Gabriel F. L., Cyris M., Jonkers N., Giger W., Guenther K., Kohler H. P.. ( 2007;). Elucidation of the ipso-substitution mechanism for side-chain cleavage of α-quaternary 4-nonylphenols and 4-t-butoxyphenol in Sphingobium xenophagum Bayram. Appl Environ Microbiol73:3320–3326 [CrossRef][PubMed]
    [Google Scholar]
  18. Gabriel F. L., Routledge E. J., Heidlberger A., Rentsch D., Guenther K., Giger W., Sumpter J. P., Kohler H. P.. ( 2008;). Isomer-specific degradation and endocrine disrupting activity of nonylphenols. Environ Sci Technol42:6399–6408 [CrossRef][PubMed]
    [Google Scholar]
  19. Han C.-G., Shiga Y., Tobe T., Saskawa C., Ohtsubo E.. ( 2001;). Structural and functional characterization of IS679 and IS66-family elements. J Bacteriol183:4296–4304[CrossRef]
    [Google Scholar]
  20. Hesselsøe M., Jensen D., Skals K., Olesen T., Moldrup P., Roslev P., Mortensen G. K., Henriksen K.. ( 2001;). Degradation of 4-nonylphenol in homogeneous and nonhomogeneous mixtures of soil and sewage sludge. Environ Sci Technol35:3695–3700 [CrossRef][PubMed]
    [Google Scholar]
  21. Junghanns C., Moeder M., Krauss G., Martin C., Schlosser D.. ( 2005;). Degradation of the xenoestrogen nonylphenol by aquatic fungi and their laccases. Microbiology151:45–57 [CrossRef][PubMed]
    [Google Scholar]
  22. Katase T., Okuda K., Kim Y.-S., Eun H., Takada H., Uchiyama T., Saito H., Makino M., Fujimoto Y.. ( 2008;). Estrogen equivalent concentration of 13 branched para-nonylphenols in three technical mixtures by isomer-specific determination using their synthetic standards in SIM mode with GC-MS and two new diasteromeric isomers. Chemosphere70:1961–1972 [CrossRef][PubMed]
    [Google Scholar]
  23. Kolvenbach B., Schlaich N., Raoui Z., Prell J., Zühlke S., Schäffer A., Guengerich F. P., Corvini P. F. X.. ( 2007;). Degradation pathway of bisphenol A: does ipso substitution apply to phenols containing a quaternary α-carbon structure in the para position?. Appl Environ Microbiol73:4776–4784 [CrossRef][PubMed]
    [Google Scholar]
  24. Kovach M. E., Elzer P. H., Hill D. S., Robertson G. T., Farris M. A., Roop R. M. II, Peterson K. M.. ( 1995;). Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene166:175–176 [CrossRef][PubMed]
    [Google Scholar]
  25. Kwack S. J., Kwon O., Kim H. S., Kim S. S., Kim S. H., Sohn K. H., Lee R. D., Park C. H., Jeung E. B. et al. ( 2002;). Comparative evaluation of alkylphenolic compounds on estrogenic activity in vitro and in vivo . J Toxicol Environ Health A65:419–431 [CrossRef][PubMed]
    [Google Scholar]
  26. Lalah J. O., Schramm K.-W., Lenoir D., Henkelmann B., Hertkorn N., Matuschek G., Kettrup A., Günther K.. ( 2001;). Regioselective synthesis of a branched isomer of nonylphenol, 4-(3′,6′-dimethyl-3′-heptyl)phenol, and determination of its important environmental properties. Chemistry7:4790–4795 [CrossRef][PubMed]
    [Google Scholar]
  27. Lech J. J., Lewis S. K., Ren L.. ( 1996;). In vivo estrogenic activity of nonylphenol in rainbow trout. Fundam Appl Toxicol30:229–232 [CrossRef][PubMed]
    [Google Scholar]
  28. Martin C., Timm J., Rauzier J., Gomez-Lus R., Davies J., Gicquel B.. ( 1990;). Transposition of an antibiotic resistance element in mycobacteria. Nature345:739–743 [CrossRef][PubMed]
    [Google Scholar]
  29. Mortensen G. K., Kure L. K.. ( 2003;). Degradation of nonylphenol in spiked soils and in soils treated with organic waste products. Environ Toxicol Chem22:718–721 [CrossRef][PubMed]
    [Google Scholar]
  30. Mueller G. C., Kim U. H.. ( 1978;). Displacement of estradiol from estrogen receptors by simple alkyl phenols. Endocrinology102:1429–1435 [CrossRef][PubMed]
    [Google Scholar]
  31. Nagata Y., Endo R., Ito M., Ohtsubo Y., Tsuda M.. ( 2007;). Aerobic degradation of lindane (γ-hexachlorocyclohexane) in bacteria and its biochemical and molecular basis. Appl Microbiol Biotechnol76:741–752 [CrossRef][PubMed]
    [Google Scholar]
  32. Porter A. W., Hay A. G.. ( 2007;). Identification of opdA, a gene involved in biodegradation of the endocrine disrupter octylphenol. Appl Environ Microbiol73:7373–7379 [CrossRef][PubMed]
    [Google Scholar]
  33. Porter A. W., Campbell B. R., Kolvenbach B. A., Corvini P. F.-X., Benndorf D., Rivera-Cancel G., Hay A. G.. ( 2012;). Identification of the flavin monooxygenase responsible for ipso substitution of alkyl and alkoxyphenols in Sphingomonas sp. TTNP3 and Sphingobium xenophagum Bayram. Appl Microbiol Biotechnol94:261–272 [CrossRef][PubMed]
    [Google Scholar]
  34. Renner R.. ( 1997;). European bans on surfactant trigger transatlantic debate. Environ Sci Technol31:316A–320A [CrossRef][PubMed]
    [Google Scholar]
  35. Saito H., Miura K. I.. ( 1963;). Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta72:619–629 [CrossRef][PubMed]
    [Google Scholar]
  36. Sambrook J., Fritsch E. F., Maniatis T.. ( 1989;). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  37. Soares A., Guieysse B., Mattiasson B.. ( 2003;). Biodegradation of nonylphenol in a continuous packed-bed bioreactor. Biotechnol Lett25:927–933 [CrossRef][PubMed]
    [Google Scholar]
  38. Soares A., Guieysse B., Jefferson B., Cartmell E., Lester J. N.. ( 2008;). Nonylphenol in the environment: a critical review on occurrence, fate, toxicity and treatment in wastewaters. Environ Int34:1033–1049 [CrossRef][PubMed]
    [Google Scholar]
  39. Stolz A.. ( 2009;). Molecular characteristics of xenobiotic-degrading sphingomonads. Appl Microbiol Biotechnol81:793–811 [CrossRef][PubMed]
    [Google Scholar]
  40. Takeo M., Yasukawa T., Abe Y., Niihara S., Maeda Y., Negoro S.. ( 2003;). Cloning and characterization of a 4-nitrophenol hydroxylase gene cluster from Rhodococcus sp. PN1. J Biosci Bioeng95:139–145[PubMed][CrossRef]
    [Google Scholar]
  41. Takeo M., Prabu S. K., Kitamura C., Hirai M., Takahashi H., Kato D., Negoro S.. ( 2006;). Characterization of alkylphenol degradation gene cluster in Pseudomonas putida MT4 and evidence of oxidation of alkylphenols and alkylcatechols with medium-length alkyl chain. J Biosci Bioeng102:352–361 [CrossRef][PubMed]
    [Google Scholar]
  42. Tanghe T., Devriese G., Verstraete W.. ( 1998;). Nonylphenol degradation in lab scale activated sludge units is temperature dependent. Water Res32:2889–2896 [CrossRef]
    [Google Scholar]
  43. Tanghe T., Dhooge W., Verstraete W.. ( 1999;). Isolation of a bacterial strain able to degrade branched nonylphenol. Appl Environ Microbiol65:746–751[PubMed]
    [Google Scholar]
  44. Ushiba Y., Takahara Y., Ohta H.. ( 2003;). Sphingobium amiense sp. nov., a novel nonylphenol-degrading bacterium isolated from a river sediment. Int J Syst Evol Microbiol53:2045–2048 [CrossRef][PubMed]
    [Google Scholar]
  45. Vallini G., Frassinetti S., Scorzetti G.. ( 1997;). Candida aquaetextoris sp. nov., a new species of yeast occurring in sludge from a textile industry wastewater treatment plant in Tuscany, Italy. Int J Syst Bacteriol47:336–340 [CrossRef][PubMed]
    [Google Scholar]
  46. van Berkel W. J., Kamerbeek N. M., Fraaije M. W.. ( 2006;). Flavoprotein monooxygenases, a diverse class of oxidative biocatalysts. J Biotechnol124:670–689 [CrossRef][PubMed]
    [Google Scholar]
  47. White R., Jobling S., Hoare S. A., Sumpter J. P., Parker M. G.. ( 1994;). Environmentally persistent alkylphenolic compounds are estrogenic. Endocrinology135:175–182 [CrossRef][PubMed]
    [Google Scholar]
  48. Wierenga R. K., Terpstra P., Hol W. G. J.. ( 1986;). Prediction of the occurrence of the ADP-binding β α β-fold in proteins, using an amino acid sequence fingerprint. J Mol Biol187:101–107 [CrossRef][PubMed]
    [Google Scholar]
  49. ).Presence and fate of the endocrine disrupter octylphenol
  50. Yabuuchi E., Kosako Y.. ( 2005;). Sphingomonas ord. nov. Bergey’s Manual of Systematic Bacteriology, 2nd edn.vol. 2C230–258 Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M.. New York: Springer;
    [Google Scholar]
  51. Ying G. G., Williams B., Kookana R.. ( 2002;). Environmental fate of alkylphenols and alkylphenol ethoxylates – a review. Environ Int28:215–226 [CrossRef][PubMed]
    [Google Scholar]
  52. Yuan S. Y., Yu C. H., Chang B. V.. ( 2004;). Biodegradation of nonylphenol in river sediment. Environ Pollut127:425–430 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.055335-0
Loading
/content/journal/micro/10.1099/mic.0.055335-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error