1887

Abstract

Determining transcription factor (TF) recognition motifs or operator sites is central to understanding gene regulation, yet few operators have been characterized. In this study, we used a protein-binding microarray (PBM) to discover the DNA recognition sites and putative regulons for three TetR and one MarR family TFs derived from , which are common to the genus . We also describe the development and application of a more streamlined version of the PBM technology that significantly reduced the experimental time. Despite the genus containing many pathogenically important species, only a handful of TF operator sites have been experimentally characterized for to date. Our study provides a significant addition to this knowledge base and illustrates some general challenges of discovering operators on a large scale for prokaryotes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.055129-0
2012-02-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/2/571.html?itemId=/content/journal/micro/10.1099/mic.0.055129-0&mimeType=html&fmt=ahah

References

  1. Aravind L., Anantharaman V., Balaji S., Babu M. M., Iyer L. M.. ( 2005;). The many faces of the helix-turn-helix domain: transcription regulation and beyond. . FEMS Microbiol Rev 29:, 231–262.[PubMed]
    [Google Scholar]
  2. Badis G., Berger M. F., Philippakis A. A., Talukder S., Gehrke A. R., Jaeger S. A., Chan E. T., Metzler G., Vedenko A.. & other authors ( 2009;). Diversity and complexity in DNA recognition by transcription factors. . Science 324:, 1720–1723. [CrossRef][PubMed]
    [Google Scholar]
  3. Berger M. F., Bulyk M. L.. ( 2009;). Universal protein-binding microarrays for the comprehensive characterization of the DNA-binding specificities of transcription factors. . Nat Protoc 4:, 393–411. [CrossRef][PubMed]
    [Google Scholar]
  4. Berger M. F., Philippakis A. A., Qureshi A. M., He F. S., Estep P. W. III, Bulyk M. L.. ( 2006;). Compact, universal DNA microarrays to comprehensively determine transcription-factor binding site specificities. . Nat Biotechnol 24:, 1429–1435. [CrossRef][PubMed]
    [Google Scholar]
  5. Berger M. F., Badis G., Gehrke A. R., Talukder S., Philippakis A. A., Peña-Castillo L., Alleyne T. M., Mnaimneh S., Botvinnik O. B.. & other authors ( 2008;). Variation in homeodomain DNA binding revealed by high-resolution analysis of sequence preferences. . Cell 133:, 1266–1276. [CrossRef][PubMed]
    [Google Scholar]
  6. Chain P. S. G., Denef V. J., Konstantinidis K. T., Vergez L. M., Agulló L., Reyes V. L., Hauser L., Córdova M., Gómez L.. & other authors ( 2006;). Burkholderia xenovorans LB400 harbors a multi-replicon, 9.73-Mbp genome shaped for versatility. . Proc Natl Acad Sci U S A 103:, 15280–15287. [CrossRef][PubMed]
    [Google Scholar]
  7. Coenye T., LiPuma J. J.. ( 2003;). Molecular epidemiology of Burkholderia species. . Front Biosci 8:, e55–e67. [CrossRef][PubMed]
    [Google Scholar]
  8. Dam P., Olman V., Harris K., Su Z., Xu Y.. ( 2007;). Operon prediction using both genome-specific and general genomic information. . Nucleic Acids Res 35:, 288–298. [CrossRef][PubMed]
    [Google Scholar]
  9. Dudley A. M., Aach J., Steffen M. A., Church G. M.. ( 2002;). Measuring absolute expression with microarrays with a calibrated reference sample and an extended signal intensity range. . Proc Natl Acad Sci U S A 99:, 7554–7559. [CrossRef][PubMed]
    [Google Scholar]
  10. Gama-Castro S., Jiménez-Jacinto V., Peralta-Gil M., Santos-Zavaleta A., Peñaloza-Spinola M. I., Contreras-Moreira B., Segura-Salazar J., Muñiz-Rascado L., Martínez-Flores I.. & other authors ( 2008;). RegulonDB (version 6.0): gene regulation model of Escherichia coli K-12 beyond transcription, active (experimental) annotated promoters and Textpresso navigation. . Nucleic Acids Res 36: (Database issue), D120–D124. [CrossRef][PubMed]
    [Google Scholar]
  11. Gordon B. R. G., Li Y., Cote A., Weirauch M. T., Ding P., Hughes T. R., Navarre W. W., Xia B., Liu J.. ( 2011;). Structural basis for recognition of AT-rich DNA by unrelated xenogeneic silencing proteins. . Proc Natl Acad Sci U S A 108:, 10690–10695. [CrossRef][PubMed]
    [Google Scholar]
  12. Grove A.. ( 2010;). Urate-responsive MarR homologs from Burkholderia. . Mol Biosyst 6:, 2133–2142. [CrossRef][PubMed]
    [Google Scholar]
  13. Grove C. A., De Masi F., Barrasa M. I., Newburger D. E., Alkema M. J., Bulyk M. L., Walhout A. J. M.. ( 2009;). A multiparameter network reveals extensive divergence between C. elegans bHLH transcription factors. . Cell 138:, 314–327. [CrossRef][PubMed]
    [Google Scholar]
  14. Hamlin J. N., Bloodworth R. A., Cardona S. T.. ( 2009;). Regulation of phenylacetic acid degradation genes of Burkholderia cenocepacia K56-2. . BMC Microbiol 9:, 222. [CrossRef][PubMed]
    [Google Scholar]
  15. Kiss C., Temirov J., Chasteen L., Waldo G. S., Bradbury A. R. M.. ( 2009;). Directed evolution of an extremely stable fluorescent protein. . Protein Eng Des Sel 22:, 313–323. [CrossRef][PubMed]
    [Google Scholar]
  16. Lozada-Chávez I., Angarica V. E., Collado-Vides J., Contreras-Moreira B.. ( 2008;). The role of DNA-binding specificity in the evolution of bacterial regulatory networks. . J Mol Biol 379:, 627–643. [CrossRef][PubMed]
    [Google Scholar]
  17. Mao F., Dam P., Chou J., Olman V., Xu Y.. ( 2009;). DOOR: a database for prokaryotic operons. . Nucleic Acids Res 37: (Database issue), D459–D463. [CrossRef][PubMed]
    [Google Scholar]
  18. Mukherjee S., Berger M. F., Jona G., Wang X. S., Muzzey D., Snyder M., Young R. A., Bulyk M. L.. ( 2004;). Rapid analysis of the DNA-binding specificities of transcription factors with DNA microarrays. . Nat Genet 36:, 1331–1339. [CrossRef][PubMed]
    [Google Scholar]
  19. Pompeani A. J., Irgon J. J., Berger M. F., Bulyk M. L., Wingreen N. S., Bassler B. L.. ( 2008;). The Vibrio harveyi master quorum-sensing regulator, LuxR, a TetR-type protein is both an activator and a repressor: DNA recognition and binding specificity at target promoters. . Mol Microbiol 70:, 76–88. [CrossRef][PubMed]
    [Google Scholar]
  20. Ramos J. L., Martínez-Bueno M., Molina-Henares A. J., Terán W., Watanabe K., Zhang X., Gallegos M. T., Brennan R., Tobes R.. ( 2005;). The TetR family of transcriptional repressors. . Microbiol Mol Biol Rev 69:, 326–356. [CrossRef][PubMed]
    [Google Scholar]
  21. Riley L. G., Ralston G. B., Weiss A. S.. ( 1996;). Multimer formation as a consequence of separate homodimerization domains: the human c-Jun leucine zipper is a transplantable dimerization module. . Protein Eng 9:, 223–230. [CrossRef][PubMed]
    [Google Scholar]
  22. Sun G. W., Chen Y., Liu Y., Tan G.-Y. G., Ong C., Tan P., Gan Y.-H.. ( 2010;). Identification of a regulatory cascade controlling type III secretion system 3 gene expression in Burkholderia pseudomallei. . Mol Microbiol 76:, 677–689. [CrossRef][PubMed]
    [Google Scholar]
  23. van Helden J.. ( 2003;). Regulatory sequence analysis tools. . Nucleic Acids Res 31:, 3593–3596. [CrossRef][PubMed]
    [Google Scholar]
  24. Vingron M., Brazma A., Coulson R., van Helden J., Manke T., Palin K., Sand O., Ukkonen E.. ( 2009;). Integrating sequence, evolution and functional genomics in regulatory genomics. . Genome Biol 10:, 202. [CrossRef][PubMed]
    [Google Scholar]
  25. Wei G.-H., Badis G., Berger M. F., Kivioja T., Palin K., Enge M., Bonke M., Jolma A., Varjosalo M.. & other authors ( 2010;). Genome-wide analysis of ETS-family DNA-binding in vitro and in vivo. . EMBO J 29:, 2147–2160. [CrossRef][PubMed]
    [Google Scholar]
  26. Weingart C. L., White C. E., Liu S., Chai Y., Cho H., Tsai C.-S., Wei Y., Delay N. R., Gronquist M. R.. & other authors ( 2005;). Direct binding of the quorum sensing regulator CepR of Burkholderia cenocepacia to two target promoters in vitro. . Mol Microbiol 57:, 452–467. [CrossRef][PubMed]
    [Google Scholar]
  27. Wilkinson S. P., Grove A.. ( 2006;). Ligand-responsive transcriptional regulation by members of the MarR family of winged helix proteins. . Curr Issues Mol Biol 8:, 51–62.[PubMed]
    [Google Scholar]
  28. Wissmann A., Meier I., Hillen W.. ( 1988;). Saturation mutagenesis of the Tn10-encoded tet operator O1. Identification of base-pairs involved in Tet repressor recognition. . J Mol Biol 202:, 397–406. [CrossRef][PubMed]
    [Google Scholar]
  29. Workman C. T., Yin Y., Corcoran D. L., Ideker T., Stormo G. D., Benos P. V.. ( 2005;). enoLOGOS: a versatile web tool for energy normalized sequence logos. . Nucleic Acids Res 33: (Web Server issue), W389–W392. [CrossRef][PubMed]
    [Google Scholar]
  30. Yu Z., Reichheld S. E., Savchenko A., Parkinson J., Davidson A. R.. ( 2010;). A comprehensive analysis of structural and sequence conservation in the TetR family transcriptional regulators. . J Mol Biol 400:, 847–864. [CrossRef][PubMed]
    [Google Scholar]
  31. Zhu C., Byers K. J. R. P., McCord R. P., Shi Z., Berger M. F., Newburger D. E., Saulrieta K., Smith Z., Shah M. V.. & other authors ( 2009;). High-resolution DNA-binding specificity analysis of yeast transcription factors. . Genome Res 19:, 556–566. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.055129-0
Loading
/content/journal/micro/10.1099/mic.0.055129-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error