1887

Abstract

The chaperonin GroE (GroEL and the co-chaperonin GroES) is the only chaperone system that is essential for the viability of GroE is absolutely required for the folding of at least 57 proteins in , referred to as class IV substrates, and assists in the folding of many more. Although GroE is mainly involved in protein folding, when it is depleted, the expression levels of about a hundred further proteins can be seen to increase, most prominently methionine synthase (MetE). Here we investigate the mechanism of overexpression in GroE-depleted cells. Gene fusion experiments in which the transcriptional region was fused to an assayable reporter showed that addition of a GroE-independent MetK homologue [MetK synthesizes -adenosylmethionine (SAM), the corepressor] to the system ( MetK depends on GroE for folding) almost fully suppressed the increased expression. An analysis of deletion mutants in the promoter, and overexpression and disruption of the gene, showed that the absence of MetJ binding and increased levels of the activator MetR resulted in the overexpression of MetE. We conclude that the need of for , and the need of for GroE, can explain the overexpression of methionine synthase in GroE-depleted cells.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.055079-0
2012-04-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/4/917.html?itemId=/content/journal/micro/10.1099/mic.0.055079-0&mimeType=html&fmt=ahah

References

  1. Cai X. Y., Redfield B., Maxon M., Weissbach H., Brot N.. ( 1989a;). The effect of homocysteine on MetR regulation of metE, metR and metH expression in vitro. . Biochem Biophys Res Commun 163:, 79–83. [CrossRef][PubMed]
    [Google Scholar]
  2. Cai X. Y., Maxon M. E., Redfield B., Glass R., Brot N., Weissbach H.. ( 1989b;). Methionine synthesis in Escherichia coli: effect of the MetR protein on metE and metH expression. . Proc Natl Acad Sci U S A 86:, 4407–4411. [CrossRef][PubMed]
    [Google Scholar]
  3. Chapman E., Farr G. W., Usaite R., Furtak K., Fenton W. A., Chaudhuri T. K., Hondorp E. R., Matthews R. G., Wolf S. G.. & other authors ( 2006;). Global aggregation of newly translated proteins in an Escherichia coli strain deficient of the chaperonin GroEL. . Proc Natl Acad Sci U S A 103:, 15800–15805. [CrossRef][PubMed]
    [Google Scholar]
  4. Dam M., Gerdes K.. ( 1994;). Partitioning of plasmid R1. Ten direct repeats flanking the parA promoter constitute a centromere-like partition site parC, that expresses incompatibility. . J Mol Biol 236:, 1289–1298. [CrossRef][PubMed]
    [Google Scholar]
  5. Fayet O., Ziegelhoffer T., Georgopoulos C.. ( 1989;). The groES and groEL heat shock gene products of Escherichia coli are essential for bacterial growth at all temperatures. . J Bacteriol 171:, 1379–1385.[PubMed]
    [Google Scholar]
  6. Fujiwara K., Taguchi H.. ( 2007;). Filamentous morphology in GroE-depleted Escherichia coli induced by impaired folding of FtsE. . J Bacteriol 189:, 5860–5866. [CrossRef][PubMed]
    [Google Scholar]
  7. Fujiwara K., Ishihama Y., Nakahigashi K., Soga T., Taguchi H.. ( 2010;). A systematic survey of in vivo obligate chaperonin-dependent substrates. . EMBO J 29:, 1552–1564. [CrossRef][PubMed]
    [Google Scholar]
  8. Glass J. I., Lefkowitz E. J., Glass J. S., Heiner C. R., Chen E. Y., Cassell G. H.. ( 2000;). The complete sequence of the mucosal pathogen Ureaplasma urealyticum. . Nature 407:, 757–762. [CrossRef][PubMed]
    [Google Scholar]
  9. Horwich A. L., Low K. B., Fenton W. A., Hirshfield I. N., Furtak K.. ( 1993;). Folding in vivo of bacterial cytoplasmic proteins: role of GroEL. . Cell 74:, 909–917. [CrossRef][PubMed]
    [Google Scholar]
  10. Houry W. A., Frishman D., Eckerskorn C., Lottspeich F., Hartl F. U.. ( 1999;). Identification of in vivo substrates of the chaperonin GroEL. . Nature 402:, 147–154. [CrossRef][PubMed]
    [Google Scholar]
  11. Kanemori M., Mori H., Yura T.. ( 1994;). Effects of reduced levels of GroE chaperones on protein metabolism: enhanced synthesis of heat shock proteins during steady-state growth of Escherichia coli. . J Bacteriol 176:, 4235–4242.[PubMed]
    [Google Scholar]
  12. Kerner M. J., Naylor D. J., Ishihama Y., Maier T., Chang H. C., Stines A. P., Georgopoulos C., Frishman D., Hayer-Hartl M.. & other authors ( 2005;). Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli. . Cell 122:, 209–220. [CrossRef][PubMed]
    [Google Scholar]
  13. LaMonte B. L., Hughes J. A.. ( 2006;). In vivo hydrolysis of S-adenosylmethionine induces the met regulon of Escherichia coli. . Microbiology 152:, 1451–1459. [CrossRef][PubMed]
    [Google Scholar]
  14. Masters M., Blakely G., Coulson A., McLennan N., Yerko V., Acord J.. ( 2009;). Protein folding in Escherichia coli: the chaperonin GroE and its substrates. . Res Microbiol 160:, 267–277. [CrossRef][PubMed]
    [Google Scholar]
  15. Maxon M. E., Redfield B., Cai X. Y., Shoeman R., Fujita K., Fisher W., Stauffer G., Weissbach H., Brot N.. ( 1989;). Regulation of methionine synthesis in Escherichia coli: effect of the MetR protein on the expression of the metE and metR genes. . Proc Natl Acad Sci U S A 86:, 85–89. [CrossRef][PubMed]
    [Google Scholar]
  16. McLennan N., Masters M.. ( 1998;). GroE is vital for cell-wall synthesis. . Nature 392:, 139. [CrossRef][PubMed]
    [Google Scholar]
  17. Shoeman R., Redfield B., Coleman T., Greene R. C., Smith A. A., Brot N., Weissbach H.. ( 1985a;). Regulation of methionine synthesis in Escherichia coli: effect of metJ gene product and S-adenosylmethionine on the expression of the metF gene. . Proc Natl Acad Sci U S A 82:, 3601–3605. [CrossRef][PubMed]
    [Google Scholar]
  18. Shoeman R., Redfield B., Coleman T., Brot N., Weissbach H., Greene R. C., Smith A. A., Saint-Girons I., Zakin M. M., Cohen G. N.. ( 1985b;). Regulation of the methionine regulon in Escherichia coli. . Bioessays 3:, 210–213. [CrossRef][PubMed]
    [Google Scholar]
  19. Thanbichler M., Neuhierl B., Böck A.. ( 1999;). S-Methylmethionine metabolism in Escherichia coli. . J Bacteriol 181:, 662–665.[PubMed]
    [Google Scholar]
  20. Urbanowski M. L., Stauffer G. V.. ( 1987;). Regulation of the metR gene of Salmonella typhimurium.. J Bacteriol 169:, 5841–5844.
    [Google Scholar]
  21. Urbanowski M. L., Stauffer G. V.. ( 1989;). Role of homocysteine in metR-mediated activation of the metE and metH genes in Salmonella typhimurium and Escherichia coli. . J Bacteriol 171:, 3277–3281.[PubMed]
    [Google Scholar]
  22. Viitanen P. V., Gatenby A. A., Lorimer G. H.. ( 1992;). Purified chaperonin 60 (groEL) interacts with the nonnative states of a multitude of Escherichia coli proteins. . Protein Sci 1:, 363–369. [CrossRef][PubMed]
    [Google Scholar]
  23. Yamada M., Sedgwick B., Sofuni T., Nohmi T.. ( 1995;). Construction and characterization of mutants of Salmonella typhimurium deficient in DNA repair of O6-methylguanine. . J Bacteriol 177:, 1511–1519.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.055079-0
Loading
/content/journal/micro/10.1099/mic.0.055079-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error